Cargando…
A Simplified CNN Classification Method for MI-EEG via the Electrode Pairs Signals
A brain-computer interface (BCI) based on electroencephalography (EEG) can provide independent information exchange and control channels for the brain and the outside world. However, EEG signals come from multiple electrodes, the data of which can generate multiple features. How to select electrodes...
Autores principales: | Lun, Xiangmin, Yu, Zhenglin, Chen, Tao, Wang, Fang, Hou, Yimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522466/ https://www.ncbi.nlm.nih.gov/pubmed/33100985 http://dx.doi.org/10.3389/fnhum.2020.00338 |
Ejemplares similares
-
A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification
por: Lun, Xiangmin, et al.
Publicado: (2023) -
A Motor Imagery Signals Classification Method via the Difference of EEG Signals Between Left and Right Hemispheric Electrodes
por: Lun, Xiangmin, et al.
Publicado: (2022) -
SSTM-IS: simplified STM method based on instance selection for real-time EEG emotion recognition
por: Ran, Shuang, et al.
Publicado: (2023) -
A CNN-LSTM model for six human ankle movements classification on different loads
por: Li, Min, et al.
Publicado: (2023) -
Recognition of Consumer Preference by Analysis and Classification EEG Signals
por: Aldayel, Mashael, et al.
Publicado: (2021)