Cargando…
Virtual organelle self-coding for fluorescence imaging via adversarial learning
Significance: Our study introduces an application of deep learning to virtually generate fluorescence images to reduce the burdens of cost and time from considerable effort in sample preparation related to chemical fixation and staining. Aim: The objective of our work was to determine how successful...
Autores principales: | Nguyen, Thanh, Bui, Vy, Thai, Anh, Lam, Van, Raub, Christopher B., Chang, Lin-Ching, Nehmetallah, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522603/ https://www.ncbi.nlm.nih.gov/pubmed/32996300 http://dx.doi.org/10.1117/1.JBO.25.9.096009 |
Ejemplares similares
-
Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging
por: Lam, Van K., et al.
Publicado: (2020) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Reactive Hemophagocytic Lymphohistiocytosis-Associated Kikuchi-Fujimoto Disease After a Staphylococcus epidermidis Cutaneous Infection: The First Case Report
por: Cao, Ngoc Thanh, et al.
Publicado: (2021) -
Fluorescent Carbon Dots for Selective Labeling of
Subcellular Organelles
por: Unnikrishnan, Binesh, et al.
Publicado: (2020) -
Recent Advances in Organelle-Targeted Fluorescent Probes
por: Choi, Na-Eun, et al.
Publicado: (2021)