Cargando…

Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water

Difficulties associated with the integration of liquids into a UHV environment make surface‐science style studies of mineral dissolution particularly challenging. Recently, we developed a novel experimental setup for the UHV‐compatible dosing of ultrapure liquid water and studied its interaction wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Mirabella, Francesca, Balajka, Jan, Pavelec, Jiri, Göbel, Markus, Kraushofer, Florian, Schmid, Michael, Parkinson, Gareth S., Diebold, Ulrike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522689/
https://www.ncbi.nlm.nih.gov/pubmed/32639106
http://dx.doi.org/10.1002/cphc.202000471
_version_ 1783588238730985472
author Mirabella, Francesca
Balajka, Jan
Pavelec, Jiri
Göbel, Markus
Kraushofer, Florian
Schmid, Michael
Parkinson, Gareth S.
Diebold, Ulrike
author_facet Mirabella, Francesca
Balajka, Jan
Pavelec, Jiri
Göbel, Markus
Kraushofer, Florian
Schmid, Michael
Parkinson, Gareth S.
Diebold, Ulrike
author_sort Mirabella, Francesca
collection PubMed
description Difficulties associated with the integration of liquids into a UHV environment make surface‐science style studies of mineral dissolution particularly challenging. Recently, we developed a novel experimental setup for the UHV‐compatible dosing of ultrapure liquid water and studied its interaction with TiO(2) and Fe(3)O(4) surfaces. Herein, we describe a simple approach to vary the pH through the partial pressure of CO(2) ([Formula: see text] ) in the surrounding vacuum chamber and use this to study how these surfaces react to an acidic solution. The TiO(2)(110) surface is unaffected by the acidic solution, except for a small amount of carbonaceous contamination. The Fe(3)O(4)(001)‐([Formula: see text] × [Formula: see text] )R45° surface begins to dissolve at a pH 4.0–3.9 ([Formula: see text] =0.8–1 bar) and, although it is significantly roughened, the atomic‐scale structure of the Fe(3)O(4)(001) surface layer remains visible in scanning tunneling microscopy (STM) images. X‐ray photoelectron spectroscopy (XPS) reveals that the surface is chemically reduced and contains a significant accumulation of bicarbonate (HCO(3) (−)) species. These observations are consistent with Fe(II) being extracted by bicarbonate ions, leading to dissolved iron bicarbonate complexes (Fe(HCO(3))(2)), which precipitate onto the surface when the water evaporates.
format Online
Article
Text
id pubmed-7522689
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-75226892020-10-02 Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water Mirabella, Francesca Balajka, Jan Pavelec, Jiri Göbel, Markus Kraushofer, Florian Schmid, Michael Parkinson, Gareth S. Diebold, Ulrike Chemphyschem Articles Difficulties associated with the integration of liquids into a UHV environment make surface‐science style studies of mineral dissolution particularly challenging. Recently, we developed a novel experimental setup for the UHV‐compatible dosing of ultrapure liquid water and studied its interaction with TiO(2) and Fe(3)O(4) surfaces. Herein, we describe a simple approach to vary the pH through the partial pressure of CO(2) ([Formula: see text] ) in the surrounding vacuum chamber and use this to study how these surfaces react to an acidic solution. The TiO(2)(110) surface is unaffected by the acidic solution, except for a small amount of carbonaceous contamination. The Fe(3)O(4)(001)‐([Formula: see text] × [Formula: see text] )R45° surface begins to dissolve at a pH 4.0–3.9 ([Formula: see text] =0.8–1 bar) and, although it is significantly roughened, the atomic‐scale structure of the Fe(3)O(4)(001) surface layer remains visible in scanning tunneling microscopy (STM) images. X‐ray photoelectron spectroscopy (XPS) reveals that the surface is chemically reduced and contains a significant accumulation of bicarbonate (HCO(3) (−)) species. These observations are consistent with Fe(II) being extracted by bicarbonate ions, leading to dissolved iron bicarbonate complexes (Fe(HCO(3))(2)), which precipitate onto the surface when the water evaporates. John Wiley and Sons Inc. 2020-08-03 2020-08-18 /pmc/articles/PMC7522689/ /pubmed/32639106 http://dx.doi.org/10.1002/cphc.202000471 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Mirabella, Francesca
Balajka, Jan
Pavelec, Jiri
Göbel, Markus
Kraushofer, Florian
Schmid, Michael
Parkinson, Gareth S.
Diebold, Ulrike
Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water
title Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water
title_full Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water
title_fullStr Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water
title_full_unstemmed Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water
title_short Atomic‐Scale Studies of Fe(3)O(4)(001) and TiO(2)(110) Surfaces Following Immersion in CO(2)‐Acidified Water
title_sort atomic‐scale studies of fe(3)o(4)(001) and tio(2)(110) surfaces following immersion in co(2)‐acidified water
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522689/
https://www.ncbi.nlm.nih.gov/pubmed/32639106
http://dx.doi.org/10.1002/cphc.202000471
work_keys_str_mv AT mirabellafrancesca atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT balajkajan atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT pavelecjiri atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT gobelmarkus atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT kraushoferflorian atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT schmidmichael atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT parkinsongareths atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater
AT dieboldulrike atomicscalestudiesoffe3o4001andtio2110surfacesfollowingimmersioninco2acidifiedwater