Cargando…
Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods
Many numerical methods have been used to simulate the fluid flow pattern in different industrial devices. However, they are limited with modeling of complex geometries, numerical stability and expensive computational time for computing, and large hard drive. The evolution of artificial intelligence...
Autores principales: | Babanezhad, Meisam, Nakhjiri, Ali Taghvaie, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522723/ https://www.ncbi.nlm.nih.gov/pubmed/32985599 http://dx.doi.org/10.1038/s41598-020-72926-3 |
Ejemplares similares
-
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Babanezhad, Meisam, et al.
Publicado: (2021) -
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Changes in the Number of Membership Functions for
Predicting the Gas Volume Fraction in Two-Phase Flow Using Grid Partition
Clustering of the ANFIS Method
por: Babanezhad, Meisam, et al.
Publicado: (2020)