Cargando…
Spatially Adaptive Regularization in Total Field Inversion for Quantitative Susceptibility Mapping
Adaptive Total Field Inversion is described for quantitative susceptibility mapping (QSM) reconstruction from total field data through a spatially adaptive suppression of shadow artifacts through spatially adaptive regularization. The regularization for shadow suppression consists of penalizing low-...
Autores principales: | Balasubramanian, Priya S., Spincemaille, Pascal, Guo, Lingfei, Huang, Weiyuan, Kovanlikaya, Ilhami, Wang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522736/ https://www.ncbi.nlm.nih.gov/pubmed/33083722 http://dx.doi.org/10.1016/j.isci.2020.101553 |
Ejemplares similares
-
LARO: Learned acquisition and reconstruction optimization to accelerate quantitative susceptibility mapping
por: Zhang, Jinwei, et al.
Publicado: (2023) -
Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization
por: Biton, Shai, et al.
Publicado: (2019) -
QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps
por: Zhang, Hang, et al.
Publicado: (2022) -
Cranial MRI findings in acute disseminated encephalomyelitis
por: Dirik, Eray, et al.
Publicado: (1994) -
Regularization of inverse problems
por: Engl, Heinz W, et al.
Publicado: (1996)