Cargando…
The prediction for development of COVID-19 in global major epidemic areas through empirical trends in China by utilizing state transition matrix model
BACKGROUND: Since pneumonia caused by coronavirus disease 2019 (COVID-19) broke out in Wuhan, Hubei province, China, tremendous infected cases has risen all over the world attributed to its high transmissibility. We aimed to mathematically forecast the inflection point (IFP) of new cases in South Ko...
Autores principales: | Zheng, Zhong, Wu, Ke, Yao, Zhixian, Zheng, Xinyi, Zheng, Junhua, Chen, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522909/ https://www.ncbi.nlm.nih.gov/pubmed/32993524 http://dx.doi.org/10.1186/s12879-020-05417-5 |
Ejemplares similares
-
Construction and validation of a machine learning‐based nomogram: A tool to predict the risk of getting severe coronavirus disease 2019 (COVID‐19)
por: Yao, Zhixian, et al.
Publicado: (2021) -
The diagnosis of pandemic coronavirus pneumonia: A review of radiology examination and laboratory test
por: Zheng, Zhong, et al.
Publicado: (2020) -
Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2
por: Yao, Zhixian, et al.
Publicado: (2020) -
Accumulation of CD45RO+CD8+ T cells is a diagnostic and prognostic biomarker for clear cell renal cell carcinoma
por: Wu, Ke, et al.
Publicado: (2021) -
Comprehensive Characterization of Metabolism-Associated Subtypes of Renal Cell Carcinoma to Aid Clinical Therapy
por: Yao, Zhixian, et al.
Publicado: (2022)