Cargando…
Application of voxel-based morphometric method to detect brain changes in children with non-cyanotic congenital heart disease
BACKGROUND: Congenital heart disease (CHD) is a cardiovascular malformation caused by abnormal heart and/or vascular development in the fetus. In children with CHD, abnormalities in the development and function of the nervous system are common. At present, there is a lack of research on the preopera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523084/ https://www.ncbi.nlm.nih.gov/pubmed/33033575 http://dx.doi.org/10.4329/wjr.v12.i9.204 |
Sumario: | BACKGROUND: Congenital heart disease (CHD) is a cardiovascular malformation caused by abnormal heart and/or vascular development in the fetus. In children with CHD, abnormalities in the development and function of the nervous system are common. At present, there is a lack of research on the preoperative neurological development and injury in young children with non-cyanotic CHD. AIM: To determine the changes in white matter, gray matter, and cerebrospinal fluid (CSF) by magnetic resonance imaging (MRI) in children with non-cyanotic CHD as compared with healthy controls. METHODS: Children diagnosed with non-cyanotic CHD on ultrasonography (n = 54) and healthy control subjects (n = 35) were included in the study. All the subjects were aged 1–3 years. Brain MRI was performed prior to surgery for CHD. The SPM v12 software was used to calculate the volumes of the gray matter, white matter, CSF, and the whole brain (sum of the gray matter, white matter, and CSF volumes). Volume differences between the two groups were analyzed. Voxel-based morphometry was used to compare specific brain regions with statistically significant atrophy. RESULTS: Compared with the control group, the study group had significantly reduced whole-brain white matter volume (P < 0.05), but similar whole-brain gray matter, CSF, and whole-brain volumes (P > 0.05). As compared with the healthy controls, children with non-cyanotic CHD had mild underdevelopment in the white matter of the anterior central gyrus, the posterior central gyrus, and the pulvinar. CONCLUSION: Children with non-cyanotic CHD show decreased white matter volume before surgery, and this volume reduction is mainly concentrated in the somatosensory and somatic motor nerve regions. |
---|