Cargando…
Privacy-Protecting, Reliable Response Data Discovery Using COVID-19 Patient Observations
There is an urgent need to answer questions related to COVID-19’s clinical course and associations with underlying conditions and health outcomes. Multi-center data are necessary to generate reliable answers, but centralizing data in a single repository is not always possible. Using a privacy-protec...
Autores principales: | Kim, Jihoon, Neumann, Larissa, Paul, Paulina, Aratow, Michael, Bell, Douglas S., Doctor, Jason N., Hinske, Ludwig C., Jiang, Xiaoqian, Kim, Katherine K., Matheny, Michael E., Meeker, Daniella, Pletcher, Mark J., Schilling, Lisa M., SooHoo, Spencer, Xu, Hua, Zheng, Kai, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523159/ https://www.ncbi.nlm.nih.gov/pubmed/32995818 http://dx.doi.org/10.1101/2020.09.21.20196220 |
Ejemplares similares
-
Privacy-protecting, reliable response data discovery using COVID-19 patient
observations
por: Kim, Jihoon, et al.
Publicado: (2021) -
Privacy Preserving RBF Kernel Support Vector Machine
por: Li, Haoran, et al.
Publicado: (2014) -
pSCANNER: patient-centered Scalable National Network for Effectiveness Research
por: Ohno-Machado, Lucila, et al.
Publicado: (2014) -
Towards large-scale sample annotation in gene expression repositories
por: Pitzer, Erik, et al.
Publicado: (2009) -
A community assessment of privacy preserving techniques for human genomes
por: Jiang, Xiaoqian, et al.
Publicado: (2014)