Cargando…
Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
[Image: see text] Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV,...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523239/ https://www.ncbi.nlm.nih.gov/pubmed/32926779 http://dx.doi.org/10.1021/jacs.0c06400 |
_version_ | 1783588347815395328 |
---|---|
author | Weil, Tatjana Groß, Rüdiger Röcker, Annika Bravo-Rodriguez, Kenny Heid, Christian Sowislok, Andrea Le, My-Hue Erwin, Nelli Dwivedi, Mridula Bart, Stephen M. Bates, Paul Wettstein, Lukas Müller, Janis A. Harms, Mirja Sparrer, Konstantin Ruiz-Blanco, Yasser B. Stürzel, Christina M. von Einem, Jens Lippold, Sina Read, Clarissa Walther, Paul Hebel, Marco Kreppel, Florian Klärner, Frank-Gerrit Bitan, Gal Ehrmann, Michael Weil, Tanja Winter, Roland Schrader, Thomas Shorter, James Sanchez-Garcia, Elsa Münch, Jan |
author_facet | Weil, Tatjana Groß, Rüdiger Röcker, Annika Bravo-Rodriguez, Kenny Heid, Christian Sowislok, Andrea Le, My-Hue Erwin, Nelli Dwivedi, Mridula Bart, Stephen M. Bates, Paul Wettstein, Lukas Müller, Janis A. Harms, Mirja Sparrer, Konstantin Ruiz-Blanco, Yasser B. Stürzel, Christina M. von Einem, Jens Lippold, Sina Read, Clarissa Walther, Paul Hebel, Marco Kreppel, Florian Klärner, Frank-Gerrit Bitan, Gal Ehrmann, Michael Weil, Tanja Winter, Roland Schrader, Thomas Shorter, James Sanchez-Garcia, Elsa Münch, Jan |
author_sort | Weil, Tatjana |
collection | PubMed |
description | [Image: see text] Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the “phosphate tweezer” CLR01, a “carboxylate tweezer” CLR05, and a “phosphate clip” PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity. |
format | Online Article Text |
id | pubmed-7523239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75232392020-09-30 Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers Weil, Tatjana Groß, Rüdiger Röcker, Annika Bravo-Rodriguez, Kenny Heid, Christian Sowislok, Andrea Le, My-Hue Erwin, Nelli Dwivedi, Mridula Bart, Stephen M. Bates, Paul Wettstein, Lukas Müller, Janis A. Harms, Mirja Sparrer, Konstantin Ruiz-Blanco, Yasser B. Stürzel, Christina M. von Einem, Jens Lippold, Sina Read, Clarissa Walther, Paul Hebel, Marco Kreppel, Florian Klärner, Frank-Gerrit Bitan, Gal Ehrmann, Michael Weil, Tanja Winter, Roland Schrader, Thomas Shorter, James Sanchez-Garcia, Elsa Münch, Jan J Am Chem Soc [Image: see text] Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the “phosphate tweezer” CLR01, a “carboxylate tweezer” CLR05, and a “phosphate clip” PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity. American Chemical Society 2020-09-14 2020-10-07 /pmc/articles/PMC7523239/ /pubmed/32926779 http://dx.doi.org/10.1021/jacs.0c06400 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Weil, Tatjana Groß, Rüdiger Röcker, Annika Bravo-Rodriguez, Kenny Heid, Christian Sowislok, Andrea Le, My-Hue Erwin, Nelli Dwivedi, Mridula Bart, Stephen M. Bates, Paul Wettstein, Lukas Müller, Janis A. Harms, Mirja Sparrer, Konstantin Ruiz-Blanco, Yasser B. Stürzel, Christina M. von Einem, Jens Lippold, Sina Read, Clarissa Walther, Paul Hebel, Marco Kreppel, Florian Klärner, Frank-Gerrit Bitan, Gal Ehrmann, Michael Weil, Tanja Winter, Roland Schrader, Thomas Shorter, James Sanchez-Garcia, Elsa Münch, Jan Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers |
title | Supramolecular
Mechanism of Viral Envelope Disruption
by Molecular Tweezers |
title_full | Supramolecular
Mechanism of Viral Envelope Disruption
by Molecular Tweezers |
title_fullStr | Supramolecular
Mechanism of Viral Envelope Disruption
by Molecular Tweezers |
title_full_unstemmed | Supramolecular
Mechanism of Viral Envelope Disruption
by Molecular Tweezers |
title_short | Supramolecular
Mechanism of Viral Envelope Disruption
by Molecular Tweezers |
title_sort | supramolecular
mechanism of viral envelope disruption
by molecular tweezers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523239/ https://www.ncbi.nlm.nih.gov/pubmed/32926779 http://dx.doi.org/10.1021/jacs.0c06400 |
work_keys_str_mv | AT weiltatjana supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT großrudiger supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT rockerannika supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT bravorodriguezkenny supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT heidchristian supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT sowislokandrea supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT lemyhue supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT erwinnelli supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT dwivedimridula supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT bartstephenm supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT batespaul supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT wettsteinlukas supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT mullerjanisa supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT harmsmirja supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT sparrerkonstantin supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT ruizblancoyasserb supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT sturzelchristinam supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT voneinemjens supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT lippoldsina supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT readclarissa supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT waltherpaul supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT hebelmarco supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT kreppelflorian supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT klarnerfrankgerrit supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT bitangal supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT ehrmannmichael supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT weiltanja supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT winterroland supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT schraderthomas supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT shorterjames supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT sanchezgarciaelsa supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers AT munchjan supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers |