Cargando…

Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers

[Image: see text] Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV,...

Descripción completa

Detalles Bibliográficos
Autores principales: Weil, Tatjana, Groß, Rüdiger, Röcker, Annika, Bravo-Rodriguez, Kenny, Heid, Christian, Sowislok, Andrea, Le, My-Hue, Erwin, Nelli, Dwivedi, Mridula, Bart, Stephen M., Bates, Paul, Wettstein, Lukas, Müller, Janis A., Harms, Mirja, Sparrer, Konstantin, Ruiz-Blanco, Yasser B., Stürzel, Christina M., von Einem, Jens, Lippold, Sina, Read, Clarissa, Walther, Paul, Hebel, Marco, Kreppel, Florian, Klärner, Frank-Gerrit, Bitan, Gal, Ehrmann, Michael, Weil, Tanja, Winter, Roland, Schrader, Thomas, Shorter, James, Sanchez-Garcia, Elsa, Münch, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523239/
https://www.ncbi.nlm.nih.gov/pubmed/32926779
http://dx.doi.org/10.1021/jacs.0c06400
_version_ 1783588347815395328
author Weil, Tatjana
Groß, Rüdiger
Röcker, Annika
Bravo-Rodriguez, Kenny
Heid, Christian
Sowislok, Andrea
Le, My-Hue
Erwin, Nelli
Dwivedi, Mridula
Bart, Stephen M.
Bates, Paul
Wettstein, Lukas
Müller, Janis A.
Harms, Mirja
Sparrer, Konstantin
Ruiz-Blanco, Yasser B.
Stürzel, Christina M.
von Einem, Jens
Lippold, Sina
Read, Clarissa
Walther, Paul
Hebel, Marco
Kreppel, Florian
Klärner, Frank-Gerrit
Bitan, Gal
Ehrmann, Michael
Weil, Tanja
Winter, Roland
Schrader, Thomas
Shorter, James
Sanchez-Garcia, Elsa
Münch, Jan
author_facet Weil, Tatjana
Groß, Rüdiger
Röcker, Annika
Bravo-Rodriguez, Kenny
Heid, Christian
Sowislok, Andrea
Le, My-Hue
Erwin, Nelli
Dwivedi, Mridula
Bart, Stephen M.
Bates, Paul
Wettstein, Lukas
Müller, Janis A.
Harms, Mirja
Sparrer, Konstantin
Ruiz-Blanco, Yasser B.
Stürzel, Christina M.
von Einem, Jens
Lippold, Sina
Read, Clarissa
Walther, Paul
Hebel, Marco
Kreppel, Florian
Klärner, Frank-Gerrit
Bitan, Gal
Ehrmann, Michael
Weil, Tanja
Winter, Roland
Schrader, Thomas
Shorter, James
Sanchez-Garcia, Elsa
Münch, Jan
author_sort Weil, Tatjana
collection PubMed
description [Image: see text] Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the “phosphate tweezer” CLR01, a “carboxylate tweezer” CLR05, and a “phosphate clip” PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.
format Online
Article
Text
id pubmed-7523239
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-75232392020-09-30 Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers Weil, Tatjana Groß, Rüdiger Röcker, Annika Bravo-Rodriguez, Kenny Heid, Christian Sowislok, Andrea Le, My-Hue Erwin, Nelli Dwivedi, Mridula Bart, Stephen M. Bates, Paul Wettstein, Lukas Müller, Janis A. Harms, Mirja Sparrer, Konstantin Ruiz-Blanco, Yasser B. Stürzel, Christina M. von Einem, Jens Lippold, Sina Read, Clarissa Walther, Paul Hebel, Marco Kreppel, Florian Klärner, Frank-Gerrit Bitan, Gal Ehrmann, Michael Weil, Tanja Winter, Roland Schrader, Thomas Shorter, James Sanchez-Garcia, Elsa Münch, Jan J Am Chem Soc [Image: see text] Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the “phosphate tweezer” CLR01, a “carboxylate tweezer” CLR05, and a “phosphate clip” PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity. American Chemical Society 2020-09-14 2020-10-07 /pmc/articles/PMC7523239/ /pubmed/32926779 http://dx.doi.org/10.1021/jacs.0c06400 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Weil, Tatjana
Groß, Rüdiger
Röcker, Annika
Bravo-Rodriguez, Kenny
Heid, Christian
Sowislok, Andrea
Le, My-Hue
Erwin, Nelli
Dwivedi, Mridula
Bart, Stephen M.
Bates, Paul
Wettstein, Lukas
Müller, Janis A.
Harms, Mirja
Sparrer, Konstantin
Ruiz-Blanco, Yasser B.
Stürzel, Christina M.
von Einem, Jens
Lippold, Sina
Read, Clarissa
Walther, Paul
Hebel, Marco
Kreppel, Florian
Klärner, Frank-Gerrit
Bitan, Gal
Ehrmann, Michael
Weil, Tanja
Winter, Roland
Schrader, Thomas
Shorter, James
Sanchez-Garcia, Elsa
Münch, Jan
Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
title Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
title_full Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
title_fullStr Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
title_full_unstemmed Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
title_short Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers
title_sort supramolecular mechanism of viral envelope disruption by molecular tweezers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523239/
https://www.ncbi.nlm.nih.gov/pubmed/32926779
http://dx.doi.org/10.1021/jacs.0c06400
work_keys_str_mv AT weiltatjana supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT großrudiger supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT rockerannika supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT bravorodriguezkenny supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT heidchristian supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT sowislokandrea supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT lemyhue supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT erwinnelli supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT dwivedimridula supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT bartstephenm supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT batespaul supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT wettsteinlukas supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT mullerjanisa supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT harmsmirja supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT sparrerkonstantin supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT ruizblancoyasserb supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT sturzelchristinam supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT voneinemjens supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT lippoldsina supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT readclarissa supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT waltherpaul supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT hebelmarco supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT kreppelflorian supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT klarnerfrankgerrit supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT bitangal supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT ehrmannmichael supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT weiltanja supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT winterroland supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT schraderthomas supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT shorterjames supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT sanchezgarciaelsa supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers
AT munchjan supramolecularmechanismofviralenvelopedisruptionbymoleculartweezers