Cargando…
Predicting implementation: comparing validated measures of intention and assessing the role of motivation when designing behavioral interventions
BACKGROUND: Behavioral intention (which captures one’s level of motivation to perform a behavior) is considered a causal and proximal mechanism influencing the use of evidence-based practice (EBP). Implementation studies have measured intention differently, and it is unclear which is most predictive...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523324/ https://www.ncbi.nlm.nih.gov/pubmed/33005900 http://dx.doi.org/10.1186/s43058-020-00050-4 |
Sumario: | BACKGROUND: Behavioral intention (which captures one’s level of motivation to perform a behavior) is considered a causal and proximal mechanism influencing the use of evidence-based practice (EBP). Implementation studies have measured intention differently, and it is unclear which is most predictive. Some use items referring to “evidence-based practice” in general, whereas others refer to a specific EBP. There are also unresolved debates about whether item stems should be worded “I intend to,” “I will,” or “How likely are you to” and if a single-item measure can suffice. Using each stem to refer to either a specific EBP or to “evidence-based practice,” this study compares the ability of these commonly used measures to predict future EBP implementation. The predictive validity is important for causal model testing and the development of effective implementation strategies. METHODS: A longitudinal study enrolled 70 teachers to track their use of two EBPs and compare the predictive validity of six different items measuring teachers’ intention. The measures differ by whether an item refers to a specific EBP, or to “evidence-based practices” in general, and whether the stem is worded in one of the three ways: “I intend to,” “I will,” or “How likely are you to.” For each item, linear regressions estimated the variance in future behavior explained. We also compared the predictive validity of a single item versus an aggregate of items by inter-correlating the items using different stems and estimating the explained variance in EBP implementation. RESULTS: Depending on the EBP and how intention was measured, the explained variance in implementation ranged from 3.5 to 29.0%. Measures that referred to a specific EBP, rather than “evidence-based practices” in general, accounted for more variance in implementation (e.g., 29.0% vs. 8.6%, and 11.3% vs. 3.5%). The predictive validity varied depending on whether stems were worded “I intend to,” “I will,” or “How likely are you to.” CONCLUSIONS: The observed strength of the association between intentions and EBP use will depend on how intention is measured. The association was much stronger if an item referred to a specific EBP, rather than EBP in general. To predict implementation, the results support using an aggregate of two or three intention items that refer to the specific EBP. An even more pragmatic measure of intention consisting of a single item can also predict implementation. As discussed, the relationship will also vary depending on the EBP, which has direct implications for causal model testing and the design of implementation strategies. |
---|