Cargando…
Genetic grouping of SARS-CoV-2 coronavirus sequences using informative subtype markers for pandemic spread visualization
We propose an efficient framework for genetic subtyping of SARS-CoV-2, the novel coronavirus that causes the COVID-19 pandemic. Efficient viral subtyping enables visualization and modeling of the geographic distribution and temporal dynamics of disease spread. Subtyping thereby advances the developm...
Autores principales: | Zhao, Zhengqiao, Sokhansanj, Bahrad A., Malhotra, Charvi, Zheng, Kitty, Rosen, Gail L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523987/ https://www.ncbi.nlm.nih.gov/pubmed/32941419 http://dx.doi.org/10.1371/journal.pcbi.1008269 |
Ejemplares similares
-
Interpretable and Predictive Deep Neural Network Modeling of the SARS-CoV-2 Spike Protein Sequence to Predict COVID-19 Disease Severity
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Amino Acid k-mer Feature Extraction for Quantitative Antimicrobial Resistance (AMR) Prediction by Machine Learning and Model Interpretation for Biological Insights
por: ValizadehAslani, Taha, et al.
Publicado: (2020) -
Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network
por: Zhao, Zhengqiao, et al.
Publicado: (2021) -
Mapping Data to Deep Understanding: Making the Most of the Deluge of SARS-CoV-2 Genome Sequences
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Predicting COVID-19 disease severity from SARS-CoV-2 spike protein sequence by mixed effects machine learning
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022)