Cargando…
Deep learning for misinformation detection on online social networks: a survey and new perspectives
Recently, the use of social networks such as Facebook, Twitter, and Sina Weibo has become an inseparable part of our daily lives. It is considered as a convenient platform for users to share personal messages, pictures, and videos. However, while people enjoy social networks, many deceptive activiti...
Autores principales: | Islam, Md Rafiqul, Liu, Shaowu, Wang, Xianzhi, Xu, Guandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524036/ https://www.ncbi.nlm.nih.gov/pubmed/33014173 http://dx.doi.org/10.1007/s13278-020-00696-x |
Ejemplares similares
-
Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media
por: Zogan, Hamad, et al.
Publicado: (2022) -
Anatomy of an online misinformation network
por: Shao, Chengcheng, et al.
Publicado: (2018) -
Dynamics of online hate and misinformation
por: Cinelli, Matteo, et al.
Publicado: (2021) -
Online misinformation and vaccine hesitancy
por: Garett, Renee, et al.
Publicado: (2021) -
Real Fakes: The Epistemology of Online Misinformation
por: Harris, Keith Raymond
Publicado: (2022)