Cargando…

Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling

The aim of this article was to analyse in‐depth the relationship between left ventricular (LV) ejection fraction (EF) (LVEF) and the most commonly used formulas for the calculation of LV elastance (Ees), volume intercept at 0 mmHg pressure (V0), effective arterial elastance (Ea), and ventricular–art...

Descripción completa

Detalles Bibliográficos
Autores principales: Mihaileanu, Serban, Antohi, Elena‐Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524249/
https://www.ncbi.nlm.nih.gov/pubmed/32686316
http://dx.doi.org/10.1002/ehf2.12880
_version_ 1783588521772056576
author Mihaileanu, Serban
Antohi, Elena‐Laura
author_facet Mihaileanu, Serban
Antohi, Elena‐Laura
author_sort Mihaileanu, Serban
collection PubMed
description The aim of this article was to analyse in‐depth the relationship between left ventricular (LV) ejection fraction (EF) (LVEF) and the most commonly used formulas for the calculation of LV elastance (Ees), volume intercept at 0 mmHg pressure (V0), effective arterial elastance (Ea), and ventricular–arterial coupling (VAC) as are validated today. We analyse the mathematical resulting consequences, raising the question on the physiological validity. To our knowledge, some of the following mathematical consequences have never been published. On the basis of studies demonstrating that normal LV dimensions and LVEF have a Gaussian unimodal distribution, we considered that the normal modal LVEF is 62% or very close to it. Expressed as a fraction, it is 0.62, that is, the reciprocal of the Phi number (namely, 1/Φ ~ 0.618). Applying Euclid's mathematical law on the extreme and mean ratio (the golden ratio), we studied the LVEF–VAC relationship in normal hearts. The simplification of the VAC formula (with V0 = 0) leads to false physiological results; V0 extraction from single‐beat Chen's formula leads to high negative results in normal subjects; based on the Euclid law, LVEF and Ea/Ees will be equal for a ratio value of 0.618 (62%) where V0 cannot be different from 0 mL; LVEF and VAC inverse relationship formula (Ea/Ees = 1/LVEF − 1) is reducible to a fundamental property of Phi: 1/Φ = (Φ − 1), being valid only if LVEF = VAC at a 0.618 value; according to this restriction, Vo can only be 0 mL, thus describing a very limited range. The Ea/Ees ratio, owing to its mathematical more dynamic behaviour, can be more sensitive than LVEF, being a valuable clinical tool in patients with heart failure (HF) with reduced EF, acute unstable haemodynamic situations, where Ees and Ea variations are disproportionate. However, the application is doubtful in HF with preserved EF where Ees and Ea may have same‐direction augmentation. The modified VAC formula suffers from oversimplification, reducing it to a dimensionless ratio, which is supposed to approximate non‐linear time‐varying functions. Thus, we advocate for caution and in‐depth understanding when using simplified formulas in clinical practice.
format Online
Article
Text
id pubmed-7524249
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-75242492020-10-02 Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling Mihaileanu, Serban Antohi, Elena‐Laura ESC Heart Fail Reviews The aim of this article was to analyse in‐depth the relationship between left ventricular (LV) ejection fraction (EF) (LVEF) and the most commonly used formulas for the calculation of LV elastance (Ees), volume intercept at 0 mmHg pressure (V0), effective arterial elastance (Ea), and ventricular–arterial coupling (VAC) as are validated today. We analyse the mathematical resulting consequences, raising the question on the physiological validity. To our knowledge, some of the following mathematical consequences have never been published. On the basis of studies demonstrating that normal LV dimensions and LVEF have a Gaussian unimodal distribution, we considered that the normal modal LVEF is 62% or very close to it. Expressed as a fraction, it is 0.62, that is, the reciprocal of the Phi number (namely, 1/Φ ~ 0.618). Applying Euclid's mathematical law on the extreme and mean ratio (the golden ratio), we studied the LVEF–VAC relationship in normal hearts. The simplification of the VAC formula (with V0 = 0) leads to false physiological results; V0 extraction from single‐beat Chen's formula leads to high negative results in normal subjects; based on the Euclid law, LVEF and Ea/Ees will be equal for a ratio value of 0.618 (62%) where V0 cannot be different from 0 mL; LVEF and VAC inverse relationship formula (Ea/Ees = 1/LVEF − 1) is reducible to a fundamental property of Phi: 1/Φ = (Φ − 1), being valid only if LVEF = VAC at a 0.618 value; according to this restriction, Vo can only be 0 mL, thus describing a very limited range. The Ea/Ees ratio, owing to its mathematical more dynamic behaviour, can be more sensitive than LVEF, being a valuable clinical tool in patients with heart failure (HF) with reduced EF, acute unstable haemodynamic situations, where Ees and Ea variations are disproportionate. However, the application is doubtful in HF with preserved EF where Ees and Ea may have same‐direction augmentation. The modified VAC formula suffers from oversimplification, reducing it to a dimensionless ratio, which is supposed to approximate non‐linear time‐varying functions. Thus, we advocate for caution and in‐depth understanding when using simplified formulas in clinical practice. John Wiley and Sons Inc. 2020-07-20 /pmc/articles/PMC7524249/ /pubmed/32686316 http://dx.doi.org/10.1002/ehf2.12880 Text en © 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Reviews
Mihaileanu, Serban
Antohi, Elena‐Laura
Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
title Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
title_full Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
title_fullStr Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
title_full_unstemmed Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
title_short Revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
title_sort revisiting the relationship between left ventricular ejection fraction and ventricular–arterial coupling
topic Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524249/
https://www.ncbi.nlm.nih.gov/pubmed/32686316
http://dx.doi.org/10.1002/ehf2.12880
work_keys_str_mv AT mihaileanuserban revisitingtherelationshipbetweenleftventricularejectionfractionandventriculararterialcoupling
AT antohielenalaura revisitingtherelationshipbetweenleftventricularejectionfractionandventriculararterialcoupling