Cargando…
Ascorbic acid promotes the reproductive function of porcine immature Sertoli cells through transcriptome reprogramming
Vitamin C (ascorbic acid, AA) can regulate antioxidation and affect many cellular processes. However, the effect of AA on the reproduction of male animals remains less explored. Here, we showed that by supplementing exogenous AA to porcine immature Sertoli cells (iSCs), AA could promote the prolifer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524525/ https://www.ncbi.nlm.nih.gov/pubmed/33007716 http://dx.doi.org/10.1016/j.theriogenology.2020.09.022 |
Sumario: | Vitamin C (ascorbic acid, AA) can regulate antioxidation and affect many cellular processes. However, the effect of AA on the reproduction of male animals remains less explored. Here, we showed that by supplementing exogenous AA to porcine immature Sertoli cells (iSCs), AA could promote the proliferation, suppress apoptosis, and decrease the global nucleic acid methylation (5 mC and m(6)A) levels of iSCs. After we profiled mRNA and long non-coding RNA (lncRNA) expression by transcriptome sequencing on iSCs (treated by 250 μM AA for 36 h), 1232 mRNAs and 937 lncRNAs were identified to be differentially expressed (DE). Gene enrichment analysis found multiple significantly enriched biological pathways, including oxidoreductase activity, cell proliferation and apoptosis, regulation of hormone level, regulation of catalytic activity, developmental process, ATP metabolism and reproductive process. Specifically, for the reproductive process, 49 up- and 36 down-regulated DE mRNAs (including highly expressed genes, such as Tfcp2l1, Hmgcs1, Mmp7, Fndc3a, and Zfp36l1) are involved. Moreover, AA supplementation could promote the secretion of anti-müllerian hormone, inhibin B and lactate, and enhance the activity of lactate dehydrogenase as well. Taken together, AA could promote the reproductive function of pig iSCs, potentially through reprogramming the global transcriptome, and elevating hormone secretion and metabolite production. |
---|