Cargando…

Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming

Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial res...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Xue, Gao, Qun, Yuan, Mengting, Wang, Gangsheng, Zhou, Xishu, Feng, Jiajie, Shi, Zhou, Hale, Lauren, Wu, Linwei, Zhou, Aifen, Tian, Renmao, Liu, Feifei, Wu, Bo, Chen, Lijun, Jung, Chang Gyo, Niu, Shuli, Li, Dejun, Xu, Xia, Jiang, Lifen, Escalas, Arthur, Wu, Liyou, He, Zhili, Van Nostrand, Joy D., Ning, Daliang, Liu, Xueduan, Yang, Yunfeng, Schuur, Edward. A. G., Konstantinidis, Konstantinos T., Cole, James R., Penton, C. Ryan, Luo, Yiqi, Tiedje, James M., Zhou, Jizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524716/
https://www.ncbi.nlm.nih.gov/pubmed/32994415
http://dx.doi.org/10.1038/s41467-020-18706-z
_version_ 1783588599385554944
author Guo, Xue
Gao, Qun
Yuan, Mengting
Wang, Gangsheng
Zhou, Xishu
Feng, Jiajie
Shi, Zhou
Hale, Lauren
Wu, Linwei
Zhou, Aifen
Tian, Renmao
Liu, Feifei
Wu, Bo
Chen, Lijun
Jung, Chang Gyo
Niu, Shuli
Li, Dejun
Xu, Xia
Jiang, Lifen
Escalas, Arthur
Wu, Liyou
He, Zhili
Van Nostrand, Joy D.
Ning, Daliang
Liu, Xueduan
Yang, Yunfeng
Schuur, Edward. A. G.
Konstantinidis, Konstantinos T.
Cole, James R.
Penton, C. Ryan
Luo, Yiqi
Tiedje, James M.
Zhou, Jizhong
author_facet Guo, Xue
Gao, Qun
Yuan, Mengting
Wang, Gangsheng
Zhou, Xishu
Feng, Jiajie
Shi, Zhou
Hale, Lauren
Wu, Linwei
Zhou, Aifen
Tian, Renmao
Liu, Feifei
Wu, Bo
Chen, Lijun
Jung, Chang Gyo
Niu, Shuli
Li, Dejun
Xu, Xia
Jiang, Lifen
Escalas, Arthur
Wu, Liyou
He, Zhili
Van Nostrand, Joy D.
Ning, Daliang
Liu, Xueduan
Yang, Yunfeng
Schuur, Edward. A. G.
Konstantinidis, Konstantinos T.
Cole, James R.
Penton, C. Ryan
Luo, Yiqi
Tiedje, James M.
Zhou, Jizhong
author_sort Guo, Xue
collection PubMed
description Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q(10)) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5–19%, and reduces model parametric uncertainty by 55–71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.
format Online
Article
Text
id pubmed-7524716
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75247162020-10-19 Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming Guo, Xue Gao, Qun Yuan, Mengting Wang, Gangsheng Zhou, Xishu Feng, Jiajie Shi, Zhou Hale, Lauren Wu, Linwei Zhou, Aifen Tian, Renmao Liu, Feifei Wu, Bo Chen, Lijun Jung, Chang Gyo Niu, Shuli Li, Dejun Xu, Xia Jiang, Lifen Escalas, Arthur Wu, Liyou He, Zhili Van Nostrand, Joy D. Ning, Daliang Liu, Xueduan Yang, Yunfeng Schuur, Edward. A. G. Konstantinidis, Konstantinos T. Cole, James R. Penton, C. Ryan Luo, Yiqi Tiedje, James M. Zhou, Jizhong Nat Commun Article Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q(10)) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5–19%, and reduces model parametric uncertainty by 55–71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted. Nature Publishing Group UK 2020-09-29 /pmc/articles/PMC7524716/ /pubmed/32994415 http://dx.doi.org/10.1038/s41467-020-18706-z Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Guo, Xue
Gao, Qun
Yuan, Mengting
Wang, Gangsheng
Zhou, Xishu
Feng, Jiajie
Shi, Zhou
Hale, Lauren
Wu, Linwei
Zhou, Aifen
Tian, Renmao
Liu, Feifei
Wu, Bo
Chen, Lijun
Jung, Chang Gyo
Niu, Shuli
Li, Dejun
Xu, Xia
Jiang, Lifen
Escalas, Arthur
Wu, Liyou
He, Zhili
Van Nostrand, Joy D.
Ning, Daliang
Liu, Xueduan
Yang, Yunfeng
Schuur, Edward. A. G.
Konstantinidis, Konstantinos T.
Cole, James R.
Penton, C. Ryan
Luo, Yiqi
Tiedje, James M.
Zhou, Jizhong
Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
title Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
title_full Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
title_fullStr Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
title_full_unstemmed Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
title_short Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
title_sort gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524716/
https://www.ncbi.nlm.nih.gov/pubmed/32994415
http://dx.doi.org/10.1038/s41467-020-18706-z
work_keys_str_mv AT guoxue geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT gaoqun geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT yuanmengting geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT wanggangsheng geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT zhouxishu geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT fengjiajie geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT shizhou geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT halelauren geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT wulinwei geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT zhouaifen geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT tianrenmao geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT liufeifei geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT wubo geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT chenlijun geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT jungchanggyo geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT niushuli geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT lidejun geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT xuxia geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT jianglifen geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT escalasarthur geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT wuliyou geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT hezhili geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT vannostrandjoyd geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT ningdaliang geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT liuxueduan geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT yangyunfeng geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT schuuredwardag geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT konstantinidiskonstantinost geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT colejamesr geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT pentoncryan geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT luoyiqi geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT tiedjejamesm geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming
AT zhoujizhong geneinformeddecompositionmodelpredictslowersoilcarbonlossduetopersistentmicrobialadaptationtowarming