Cargando…
Collective dynamics of repeated inference in variational autoencoder rapidly find cluster structure
Deep neural networks are good at extracting low-dimensional subspaces (latent spaces) that represent the essential features inside a high-dimensional dataset. Deep generative models represented by variational autoencoders (VAEs) can generate and infer high-quality datasets, such as images. In partic...
Autores principales: | Nagano, Yoshihiro, Karakida, Ryo, Okada, Masato |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524732/ https://www.ncbi.nlm.nih.gov/pubmed/32994479 http://dx.doi.org/10.1038/s41598-020-72593-4 |
Ejemplares similares
-
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
An Active Learning Method Based on Variational Autoencoder and DBSCAN Clustering
por: Chen, Fang, et al.
Publicado: (2021) -
Image-level trajectory inference of tau pathology using variational autoencoder for Flortaucipir PET
por: Hong, Jimin, et al.
Publicado: (2022) -
Visualizing population structure with variational autoencoders
por: Battey, C J, et al.
Publicado: (2021) -
Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the peripapillary retinal arteries angle
por: Asano, Shotaro, et al.
Publicado: (2020)