Cargando…
Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer
The purpose of this study is to compare diagnostic performance of Prostate Imaging Reporting and Data System (PI-RADS) version (v) 2.1 and 2.0 for detection of Gleason Score (GS) ≥ 7 prostate cancer on MRI. Three experienced radiologists provided PI-RADS v2.0 scores and at least 12 months later v2.1...
Autores principales: | Rudolph, Madhuri Monique, Baur, Alexander Daniel Jacques, Cash, Hannes, Haas, Matthias, Mahjoub, Samy, Hartenstein, Alexander, Hamm, Charlie Alexander, Beetz, Nick Lasse, Konietschke, Frank, Hamm, Bernd, Asbach, Patrick, Penzkofer, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525456/ https://www.ncbi.nlm.nih.gov/pubmed/32994502 http://dx.doi.org/10.1038/s41598-020-72544-z |
Ejemplares similares
-
Validation of the PI-RADS language: predictive values of PI-RADS lexicon descriptors for detection of prostate cancer
por: Rudolph, Madhuri M., et al.
Publicado: (2020) -
MRI-targeted biopsy cores from prostate index lesions: assessment and prediction of the number needed
por: Beetz, Nick Lasse, et al.
Publicado: (2022) -
Correlation between Intraprostatic PSMA Uptake and MRI PI-RADS of [(68)Ga]Ga-PSMA-11 PET/MRI in Patients with Prostate Cancer: Comparison of PI-RADS Version 2.0 and PI-RADS Version 2.1
por: Zhao, Jing, et al.
Publicado: (2020) -
Inferring FDG-PET-positivity of lymph node metastases in proven lung cancer from contrast-enhanced CT using radiomics and machine learning
por: Gorodetski, Boris, et al.
Publicado: (2022) -
Prostate Cancer Nodal Staging: Using Deep Learning to Predict (68)Ga-PSMA-Positivity from CT Imaging Alone
por: Hartenstein, A., et al.
Publicado: (2020)