Cargando…

Angular super-resolution retrieval in small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval me...

Descripción completa

Detalles Bibliográficos
Autores principales: Gutman, Benjamin, Mrejen, Michael, Shabat, Gil, Avinery, Ram, Shkolnisky, Yoel, Beck, Roy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525553/
https://www.ncbi.nlm.nih.gov/pubmed/32994517
http://dx.doi.org/10.1038/s41598-020-73030-2
Descripción
Sumario:Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval methodology to enhance the angular resolution for given experimental conditions. Using minute hardware additions, we show that translating the X-ray detector in subpixel steps and modifying the incoming beam shape results in a set of 2D scattering images, which is sufficient for super-resolution SAXS retrieval. The technique is verified experimentally to show superior resolution. Such advantages have a direct impact on the ability to resolve finer nanoscopic structures and can be implemented in most existing SAXS apparatuses both using synchrotron- and laboratory-based sources.