Cargando…
Angular super-resolution retrieval in small-angle X-ray scattering
Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval me...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525553/ https://www.ncbi.nlm.nih.gov/pubmed/32994517 http://dx.doi.org/10.1038/s41598-020-73030-2 |
Sumario: | Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval methodology to enhance the angular resolution for given experimental conditions. Using minute hardware additions, we show that translating the X-ray detector in subpixel steps and modifying the incoming beam shape results in a set of 2D scattering images, which is sufficient for super-resolution SAXS retrieval. The technique is verified experimentally to show superior resolution. Such advantages have a direct impact on the ability to resolve finer nanoscopic structures and can be implemented in most existing SAXS apparatuses both using synchrotron- and laboratory-based sources. |
---|