Cargando…
Successive Statistical and Structure-Based Modeling to Identify Chemically Novel Kinase Inhibitors
[Image: see text] Kinases are frequently studied in the context of anticancer drugs. Their involvement in cell responses, such as proliferation, differentiation, and apoptosis, makes them interesting subjects in multitarget drug design. In this study, a workflow is presented that models the bioactiv...
Autores principales: | Burggraaff, Lindsey, Lenselink, Eelke B., Jespers, Willem, van Engelen, Jesper, Bongers, Brandon J., González, Marina Gorostiola, Liu, Rongfang, Hoos, Holger H., van Vlijmen, Herman W. T., IJzerman, Adriaan P., van Westen, Gerard J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525794/ https://www.ncbi.nlm.nih.gov/pubmed/32343143 http://dx.doi.org/10.1021/acs.jcim.9b01204 |
Ejemplares similares
-
Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set
por: Lenselink, Eelke B., et al.
Publicado: (2017) -
Quantitative prediction of selectivity between the A(1) and A(2A) adenosine receptors
por: Burggraaff, Lindsey, et al.
Publicado: (2020) -
Annotation of Allosteric Compounds to Enhance Bioactivity
Modeling for Class A GPCRs
por: Burggraaff, Lindsey, et al.
Publicado: (2020) -
Identification of novel small molecule inhibitors for solute carrier SGLT1 using proteochemometric modeling
por: Burggraaff, Lindsey, et al.
Publicado: (2019) -
In search of novel ligands using a structure-based approach: a case study on the adenosine A(2A) receptor
por: Lenselink, Eelke B., et al.
Publicado: (2016)