Cargando…
SIMPLEs: a single-cell RNA sequencing imputation strategy preserving gene modules and cell clusters variation
A main challenge in analyzing single-cell RNA sequencing (scRNA-seq) data is to reduce technical variations yet retain cell heterogeneity. Due to low mRNAs content per cell and molecule losses during the experiment (called ‘dropout’), the gene expression matrix has a substantial amount of zero read...
Autores principales: | Hu, Zhirui, Zu, Songpeng, Liu, Jun S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526005/ https://www.ncbi.nlm.nih.gov/pubmed/33029585 http://dx.doi.org/10.1093/nargab/lqaa077 |
Ejemplares similares
-
VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies
por: Chen, Mengjie, et al.
Publicado: (2018) -
Melissa: Bayesian clustering and imputation of single-cell methylomes
por: Kapourani, Chantriolnt-Andreas, et al.
Publicado: (2019) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
por: Peng, Tao, et al.
Publicado: (2019) -
The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles
por: Schreiber, Jacob, et al.
Publicado: (2023)