Cargando…
Leveraging TCGA gene expression data to build predictive models for cancer drug response
BACKGROUND: Machine learning has been utilized to predict cancer drug response from multi-omics data generated from sensitivities of cancer cell lines to different therapeutic compounds. Here, we build machine learning models using gene expression data from patients’ primary tumor tissues to predict...
Autores principales: | Clayton, Evan A., Pujol, Toyya A., McDonald, John F., Qiu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526215/ https://www.ncbi.nlm.nih.gov/pubmed/32998700 http://dx.doi.org/10.1186/s12859-020-03690-4 |
Ejemplares similares
-
Examining Supervised Machine Learning Methods for Integer Link Weight Prediction Using Node Metadata
por: Mori, Larissa, et al.
Publicado: (2022) -
TCGA Expedition: A Data Acquisition and Management System for TCGA Data
por: Chandran, Uma R., et al.
Publicado: (2016) -
Integrative analysis of TCGA data identifies miRNAs as drug-specific survival biomarkers
por: Lin, Shuting, et al.
Publicado: (2022) -
Identification of gene-drug interactions that impact patient survival in TCGA
por: Spainhour, John Christian Givhan, et al.
Publicado: (2016) -
Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy
por: Huang, Cai, et al.
Publicado: (2018)