Cargando…
Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes
BACKGROUND: Manual auscultation to detect abnormal breath sounds has poor inter-observer reliability. Digital stethoscopes with artificial intelligence (AI) could improve reliable detection of these sounds. We aimed to independently test the abilities of AI developed for this purpose. METHODS: One h...
Autores principales: | Kevat, Ajay, Kalirajah, Anaath, Roseby, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526232/ https://www.ncbi.nlm.nih.gov/pubmed/32993620 http://dx.doi.org/10.1186/s12931-020-01523-9 |
Ejemplares similares
-
Real‐time assessment of swallowing sound using an electronic stethoscope and an artificial intelligence system
por: Suzuki, Kazuma, et al.
Publicado: (2022) -
Deep learning-based lung sound analysis for intelligent stethoscope
por: Huang, Dong-Min, et al.
Publicado: (2023) -
Swallowing sound evaluation using an electronic stethoscope and artificial intelligence analysis for patients with amyotrophic lateral sclerosis
por: Nakamori, Masahiro, et al.
Publicado: (2023) -
Real-World Verification of Artificial Intelligence Algorithm-Assisted Auscultation of Breath Sounds in Children
por: Zhang, Jing, et al.
Publicado: (2021) -
Sound differences between electronic and acoustic stethoscopes
por: Nowak, Lukasz J., et al.
Publicado: (2018)