Cargando…

Comparing a novel machine learning method to the Friedewald formula and Martin-Hopkins equation for low-density lipoprotein estimation

BACKGROUND: Low-density lipoprotein cholesterol (LDL-C) is a target for cardiovascular prevention. Contemporary equations for LDL-C estimation have limited accuracy in certain scenarios (high triglycerides [TG], very low LDL-C). OBJECTIVES: We derived a novel method for LDL-C estimation from the sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Gurpreet, Hussain, Yasin, Xu, Zhuoran, Sholle, Evan, Michalak, Kelly, Dolan, Kristina, Lee, Benjamin C., van Rosendael, Alexander R., Fatima, Zahra, Peña, Jessica M., Wilson, Peter W. F., Gotto, Antonio M., Shaw, Leslee J., Baskaran, Lohendran, Al’Aref, Subhi J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526877/
https://www.ncbi.nlm.nih.gov/pubmed/32997716
http://dx.doi.org/10.1371/journal.pone.0239934
Descripción
Sumario:BACKGROUND: Low-density lipoprotein cholesterol (LDL-C) is a target for cardiovascular prevention. Contemporary equations for LDL-C estimation have limited accuracy in certain scenarios (high triglycerides [TG], very low LDL-C). OBJECTIVES: We derived a novel method for LDL-C estimation from the standard lipid profile using a machine learning (ML) approach utilizing random forests (the Weill Cornell model). We compared its correlation to direct LDL-C with the Friedewald and Martin-Hopkins equations for LDL-C estimation. METHODS: The study cohort comprised a convenience sample of standard lipid profile measurements (with the directly measured components of total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C], and TG) as well as chemical-based direct LDL-C performed on the same day at the New York-Presbyterian Hospital/Weill Cornell Medicine (NYP-WCM). Subsequently, an ML algorithm was used to construct a model for LDL-C estimation. Results are reported on the held-out test set, with correlation coefficients and absolute residuals used to assess model performance. RESULTS: Between 2005 and 2019, there were 17,500 lipid profiles performed on 10,936 unique individuals (4,456 females; 40.8%) aged 1 to 103. Correlation coefficients between estimated and measured LDL-C values were 0.982 for the Weill Cornell model, compared to 0.950 for Friedewald and 0.962 for the Martin-Hopkins method. The Weill Cornell model was consistently better across subgroups stratified by LDL-C and TG values, including TG >500 and LDL-C <70. CONCLUSIONS: An ML model was found to have a better correlation with direct LDL-C than either the Friedewald formula or Martin-Hopkins equation, including in the setting of elevated TG and very low LDL-C.