Cargando…

Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties

[Image: see text] Lipid nanodiscs are small synthetic lipid bilayer structures that are stabilized in solution by special circumscribing (or scaffolding) proteins or polymers. Because they create native-like environments for transmembrane proteins, lipid nanodiscs have become a powerful tool for str...

Descripción completa

Detalles Bibliográficos
Autores principales: Schachter, Itay, Allolio, Christoph, Khelashvili, George, Harries, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526989/
https://www.ncbi.nlm.nih.gov/pubmed/32697588
http://dx.doi.org/10.1021/acs.jpcb.0c03374
_version_ 1783588962017738752
author Schachter, Itay
Allolio, Christoph
Khelashvili, George
Harries, Daniel
author_facet Schachter, Itay
Allolio, Christoph
Khelashvili, George
Harries, Daniel
author_sort Schachter, Itay
collection PubMed
description [Image: see text] Lipid nanodiscs are small synthetic lipid bilayer structures that are stabilized in solution by special circumscribing (or scaffolding) proteins or polymers. Because they create native-like environments for transmembrane proteins, lipid nanodiscs have become a powerful tool for structural determination of this class of systems when combined with cryo-electron microscopy or nuclear magnetic resonance. The elastic properties of lipid bilayers determine how the lipid environment responds to membrane protein perturbations, and how the lipid in turn modifies the conformational state of the embedded protein. However, despite the abundant use of nanodiscs in determining membrane protein structure, the elastic material properties of even pure lipid nanodiscs (i.e., without embedded proteins) have not yet been quantitatively investigated. A major hurdle is due to the inherently nonlocal treatment of the elastic properties of lipid systems implemented by most existing methods, both experimental and computational. In addition, these methods are best suited for very large “infinite” size lipidic assemblies, or ones that contain periodicity, in the case of simulations. We have previously described a computational analysis of molecular dynamics simulations designed to overcome these limitations, so it allows quantification of the bending rigidity (K(C)) and tilt modulus (κ(t)) on a local scale even for finite, nonperiodic systems, such as lipid nanodiscs. Here we use this computational approach to extract values of K(C) and κ(t) for a set of lipid nanodisc systems that vary in size and lipid composition. We find that the material properties of lipid nanodiscs are different from those of infinite bilayers of corresponding lipid composition, highlighting the effect of nanodisc confinement. Nanodiscs tend to show higher stiffness than their corresponding macroscopic bilayers, and moreover, their material properties vary spatially within them. For small-size MSP1 nanodiscs, the stiffness decreases radially, from a value that is larger in their center than the moduli of the corresponding bilayers by a factor of ∼2–3. The larger nanodiscs (MSP1E3D1 and MSP2N2) show milder spatial changes of moduli that are composition dependent and can be maximal in the center or at some distance from it. These trends in moduli correlate with spatially varying structural properties, including the area per lipid and the nanodisc thickness. Finally, as has previously been reported, nanodiscs tend to show deformations from perfectly flat circular geometries to varying degrees, depending on size and lipid composition. The modulations of lipid elastic properties that we find should be carefully considered when making structural and functional inferences concerning embedded proteins.
format Online
Article
Text
id pubmed-7526989
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-75269892020-10-01 Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties Schachter, Itay Allolio, Christoph Khelashvili, George Harries, Daniel J Phys Chem B [Image: see text] Lipid nanodiscs are small synthetic lipid bilayer structures that are stabilized in solution by special circumscribing (or scaffolding) proteins or polymers. Because they create native-like environments for transmembrane proteins, lipid nanodiscs have become a powerful tool for structural determination of this class of systems when combined with cryo-electron microscopy or nuclear magnetic resonance. The elastic properties of lipid bilayers determine how the lipid environment responds to membrane protein perturbations, and how the lipid in turn modifies the conformational state of the embedded protein. However, despite the abundant use of nanodiscs in determining membrane protein structure, the elastic material properties of even pure lipid nanodiscs (i.e., without embedded proteins) have not yet been quantitatively investigated. A major hurdle is due to the inherently nonlocal treatment of the elastic properties of lipid systems implemented by most existing methods, both experimental and computational. In addition, these methods are best suited for very large “infinite” size lipidic assemblies, or ones that contain periodicity, in the case of simulations. We have previously described a computational analysis of molecular dynamics simulations designed to overcome these limitations, so it allows quantification of the bending rigidity (K(C)) and tilt modulus (κ(t)) on a local scale even for finite, nonperiodic systems, such as lipid nanodiscs. Here we use this computational approach to extract values of K(C) and κ(t) for a set of lipid nanodisc systems that vary in size and lipid composition. We find that the material properties of lipid nanodiscs are different from those of infinite bilayers of corresponding lipid composition, highlighting the effect of nanodisc confinement. Nanodiscs tend to show higher stiffness than their corresponding macroscopic bilayers, and moreover, their material properties vary spatially within them. For small-size MSP1 nanodiscs, the stiffness decreases radially, from a value that is larger in their center than the moduli of the corresponding bilayers by a factor of ∼2–3. The larger nanodiscs (MSP1E3D1 and MSP2N2) show milder spatial changes of moduli that are composition dependent and can be maximal in the center or at some distance from it. These trends in moduli correlate with spatially varying structural properties, including the area per lipid and the nanodisc thickness. Finally, as has previously been reported, nanodiscs tend to show deformations from perfectly flat circular geometries to varying degrees, depending on size and lipid composition. The modulations of lipid elastic properties that we find should be carefully considered when making structural and functional inferences concerning embedded proteins. American Chemical Society 2020-07-22 2020-08-20 /pmc/articles/PMC7526989/ /pubmed/32697588 http://dx.doi.org/10.1021/acs.jpcb.0c03374 Text en This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Schachter, Itay
Allolio, Christoph
Khelashvili, George
Harries, Daniel
Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties
title Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties
title_full Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties
title_fullStr Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties
title_full_unstemmed Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties
title_short Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties
title_sort confinement in nanodiscs anisotropically modifies lipid bilayer elastic properties
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526989/
https://www.ncbi.nlm.nih.gov/pubmed/32697588
http://dx.doi.org/10.1021/acs.jpcb.0c03374
work_keys_str_mv AT schachteritay confinementinnanodiscsanisotropicallymodifieslipidbilayerelasticproperties
AT alloliochristoph confinementinnanodiscsanisotropicallymodifieslipidbilayerelasticproperties
AT khelashviligeorge confinementinnanodiscsanisotropicallymodifieslipidbilayerelasticproperties
AT harriesdaniel confinementinnanodiscsanisotropicallymodifieslipidbilayerelasticproperties