Cargando…

Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material

The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in sing...

Descripción completa

Detalles Bibliográficos
Autores principales: Brinker, Manuel, Dittrich, Guido, Richert, Claudia, Lakner, Pirmin, Krekeler, Tobias, Keller, Thomas F., Huber, Norbert, Huber, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527211/
https://www.ncbi.nlm.nih.gov/pubmed/32998892
http://dx.doi.org/10.1126/sciadv.aba1483
_version_ 1783589009162764288
author Brinker, Manuel
Dittrich, Guido
Richert, Claudia
Lakner, Pirmin
Krekeler, Tobias
Keller, Thomas F.
Huber, Norbert
Huber, Patrick
author_facet Brinker, Manuel
Dittrich, Guido
Richert, Claudia
Lakner, Pirmin
Krekeler, Tobias
Keller, Thomas F.
Huber, Norbert
Huber, Patrick
author_sort Brinker, Manuel
collection PubMed
description The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications.
format Online
Article
Text
id pubmed-7527211
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-75272112020-10-07 Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material Brinker, Manuel Dittrich, Guido Richert, Claudia Lakner, Pirmin Krekeler, Tobias Keller, Thomas F. Huber, Norbert Huber, Patrick Sci Adv Research Articles The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications. American Association for the Advancement of Science 2020-09-30 /pmc/articles/PMC7527211/ /pubmed/32998892 http://dx.doi.org/10.1126/sciadv.aba1483 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Brinker, Manuel
Dittrich, Guido
Richert, Claudia
Lakner, Pirmin
Krekeler, Tobias
Keller, Thomas F.
Huber, Norbert
Huber, Patrick
Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
title Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
title_full Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
title_fullStr Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
title_full_unstemmed Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
title_short Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
title_sort giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527211/
https://www.ncbi.nlm.nih.gov/pubmed/32998892
http://dx.doi.org/10.1126/sciadv.aba1483
work_keys_str_mv AT brinkermanuel giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT dittrichguido giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT richertclaudia giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT laknerpirmin giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT krekelertobias giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT kellerthomasf giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT hubernorbert giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial
AT huberpatrick giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial