Cargando…
Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in sing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527211/ https://www.ncbi.nlm.nih.gov/pubmed/32998892 http://dx.doi.org/10.1126/sciadv.aba1483 |
_version_ | 1783589009162764288 |
---|---|
author | Brinker, Manuel Dittrich, Guido Richert, Claudia Lakner, Pirmin Krekeler, Tobias Keller, Thomas F. Huber, Norbert Huber, Patrick |
author_facet | Brinker, Manuel Dittrich, Guido Richert, Claudia Lakner, Pirmin Krekeler, Tobias Keller, Thomas F. Huber, Norbert Huber, Patrick |
author_sort | Brinker, Manuel |
collection | PubMed |
description | The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications. |
format | Online Article Text |
id | pubmed-7527211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75272112020-10-07 Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material Brinker, Manuel Dittrich, Guido Richert, Claudia Lakner, Pirmin Krekeler, Tobias Keller, Thomas F. Huber, Norbert Huber, Patrick Sci Adv Research Articles The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along with the sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications. American Association for the Advancement of Science 2020-09-30 /pmc/articles/PMC7527211/ /pubmed/32998892 http://dx.doi.org/10.1126/sciadv.aba1483 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Brinker, Manuel Dittrich, Guido Richert, Claudia Lakner, Pirmin Krekeler, Tobias Keller, Thomas F. Huber, Norbert Huber, Patrick Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
title | Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
title_full | Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
title_fullStr | Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
title_full_unstemmed | Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
title_short | Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
title_sort | giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527211/ https://www.ncbi.nlm.nih.gov/pubmed/32998892 http://dx.doi.org/10.1126/sciadv.aba1483 |
work_keys_str_mv | AT brinkermanuel giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT dittrichguido giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT richertclaudia giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT laknerpirmin giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT krekelertobias giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT kellerthomasf giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT hubernorbert giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial AT huberpatrick giantelectrochemicalactuationinananoporoussiliconpolypyrrolehybridmaterial |