Cargando…
Performance of a deep learning based neural network in the selection of human blastocysts for implantation
Deep learning in in vitro fertilization is currently being evaluated in the development of assistive tools for the determination of transfer order and implantation potential using time-lapse data collected through expensive imaging hardware. Assistive tools and algorithms that can work with static i...
Autores principales: | Bormann, Charles L, Kanakasabapathy, Manoj Kumar, Thirumalaraju, Prudhvi, Gupta, Raghav, Pooniwala, Rohan, Kandula, Hemanth, Hariton, Eduardo, Souter, Irene, Dimitriadis, Irene, Ramirez, Leslie B, Curchoe, Carol L, Swain, Jason, Boehnlein, Lynn M, Shafiee, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527234/ https://www.ncbi.nlm.nih.gov/pubmed/32930094 http://dx.doi.org/10.7554/eLife.55301 |
Ejemplares similares
-
Consistency and objectivity of automated embryo assessments using deep neural networks
por: Bormann, Charles L., et al.
Publicado: (2020) -
Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality
por: Thirumalaraju, Prudhvi, et al.
Publicado: (2021) -
Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score
por: Dimitriadis, Irene, et al.
Publicado: (2019) -
Validation of a smartphone-based device to measure concentration, motility, and morphology in swine ejaculates
por: Suárez-Trujillo, Aridany, et al.
Publicado: (2022) -
Virus detection using nanoparticles and deep neural network–enabled smartphone system
por: Draz, Mohamed S., et al.
Publicado: (2020)