Cargando…
Caps and progression-free sets in [Formula: see text]
We study progression-free sets in the abelian groups [Formula: see text] . Let [Formula: see text] denote the maximal size of a set [Formula: see text] that does not contain a proper arithmetic progression of length k. We give lower bound constructions, which e.g. include that [Formula: see text] ,...
Autores principales: | Elsholtz, Christian, Pach, Péter Pál |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527337/ https://www.ncbi.nlm.nih.gov/pubmed/33071461 http://dx.doi.org/10.1007/s10623-020-00769-0 |
Ejemplares similares
-
Large subsets of [Formula: see text] without arithmetic progressions
por: Elsholtz, Christian, et al.
Publicado: (2022) -
Measurement of polarization observables [Formula: see text] , [Formula: see text] , and [Formula: see text] in [Formula: see text] and [Formula: see text] photoproduction off quasi-free nucleons
por: Jermann, N., et al.
Publicado: (2023) -
Transition Property for [Formula: see text]-Power Free Languages with [Formula: see text] and [Formula: see text] Letters
por: Rukavicka, Josef
Publicado: (2020) -
[Formula: see text] Is Decidable in [Formula: see text]
por: Bès, Alexis, et al.
Publicado: (2020) -
Observation of B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] and B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] decays
por: Tumasyan, A., et al.
Publicado: (2022)