Cargando…
Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled Methionine-Containing Minigastrin Analogue
BACKGROUND: The radiolabelling of receptor-binding peptides for therapy is a challenge since the peptide itself is exposed (during labelling, storage and transport) to radiation-induced damage, directly or indirectly, in aqueous solution. Hence, the use of radiostabilizers seems to be mandatory, esp...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527569/ https://www.ncbi.nlm.nih.gov/pubmed/31526356 http://dx.doi.org/10.2174/1874471012666190916112904 |
_version_ | 1783589086080008192 |
---|---|
author | Trindade, Victoria Balter, Henia |
author_facet | Trindade, Victoria Balter, Henia |
author_sort | Trindade, Victoria |
collection | PubMed |
description | BACKGROUND: The radiolabelling of receptor-binding peptides for therapy is a challenge since the peptide itself is exposed (during labelling, storage and transport) to radiation-induced damage, directly or indirectly, in aqueous solution. Hence, the use of radiostabilizers seems to be mandatory, especially in peptide molecules that contain radiation-sensitive amino acids. OBJECTIVE: The aim of this study was to investigate the effect of two stabilizers, gentisic acid and methionine, to delve into how each of them affects the radiolabelling and stability of the minigastrin analogue [(177)Lu]Lu-DOTA-His-His-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH(2) through the analysis of the 22 species distinguished over time by an optimized HPLC system. METHODS: The stabilizers, in different combinations, were present from the beginning of the labelling process carried out at 96 °C for 15 min. The stability was studied for up to 7 days. RESULTS: The unexpected selective oxidation of the methionine residue of the radiolabelled peptide, promoted by gentisic acid, led to studying the effect of pH, from 3.5 to 6.0, in the presence of only this stabilizer. A pH-dependent antioxidant behaviour was revealed, showing a decrease in peptide impurities but an increase in the selective oxidation as the pH was increased. CONCLUSION: The selective oxidation of the methionine residue could be induced by oxidizing species probably produced in the reaction between gentisic acid and free radicals of water, during the protection of the radiolabelled peptide from the attack of these harmful species. Therefore, the addition of methionine becomes necessary to effectively decrease this selective oxidation in the methionine-containing peptide. |
format | Online Article Text |
id | pubmed-7527569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Bentham Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-75275692020-10-15 Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled
Methionine-Containing Minigastrin Analogue Trindade, Victoria Balter, Henia Curr Radiopharm Article BACKGROUND: The radiolabelling of receptor-binding peptides for therapy is a challenge since the peptide itself is exposed (during labelling, storage and transport) to radiation-induced damage, directly or indirectly, in aqueous solution. Hence, the use of radiostabilizers seems to be mandatory, especially in peptide molecules that contain radiation-sensitive amino acids. OBJECTIVE: The aim of this study was to investigate the effect of two stabilizers, gentisic acid and methionine, to delve into how each of them affects the radiolabelling and stability of the minigastrin analogue [(177)Lu]Lu-DOTA-His-His-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH(2) through the analysis of the 22 species distinguished over time by an optimized HPLC system. METHODS: The stabilizers, in different combinations, were present from the beginning of the labelling process carried out at 96 °C for 15 min. The stability was studied for up to 7 days. RESULTS: The unexpected selective oxidation of the methionine residue of the radiolabelled peptide, promoted by gentisic acid, led to studying the effect of pH, from 3.5 to 6.0, in the presence of only this stabilizer. A pH-dependent antioxidant behaviour was revealed, showing a decrease in peptide impurities but an increase in the selective oxidation as the pH was increased. CONCLUSION: The selective oxidation of the methionine residue could be induced by oxidizing species probably produced in the reaction between gentisic acid and free radicals of water, during the protection of the radiolabelled peptide from the attack of these harmful species. Therefore, the addition of methionine becomes necessary to effectively decrease this selective oxidation in the methionine-containing peptide. Bentham Science Publishers 2020-08 2020-08 /pmc/articles/PMC7527569/ /pubmed/31526356 http://dx.doi.org/10.2174/1874471012666190916112904 Text en © 2020 Bentham Science Publishers https://creativecommons.org/licenses/by-nc/4.0/legalcode This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
spellingShingle | Article Trindade, Victoria Balter, Henia Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled Methionine-Containing Minigastrin Analogue |
title | Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled
Methionine-Containing Minigastrin Analogue |
title_full | Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled
Methionine-Containing Minigastrin Analogue |
title_fullStr | Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled
Methionine-Containing Minigastrin Analogue |
title_full_unstemmed | Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled
Methionine-Containing Minigastrin Analogue |
title_short | Oxidant and Antioxidant Effects of Gentisic Acid in a (177)Lu-Labelled
Methionine-Containing Minigastrin Analogue |
title_sort | oxidant and antioxidant effects of gentisic acid in a (177)lu-labelled
methionine-containing minigastrin analogue |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527569/ https://www.ncbi.nlm.nih.gov/pubmed/31526356 http://dx.doi.org/10.2174/1874471012666190916112904 |
work_keys_str_mv | AT trindadevictoria oxidantandantioxidanteffectsofgentisicacidina177lulabelledmethioninecontainingminigastrinanalogue AT balterhenia oxidantandantioxidanteffectsofgentisicacidina177lulabelledmethioninecontainingminigastrinanalogue |