Cargando…

Bioremediation and tolerance of zinc ions using Fusarium solani

Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffract...

Descripción completa

Detalles Bibliográficos
Autores principales: El Sayed, Manal T., El-Sayed, Ashraf S.A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527588/
https://www.ncbi.nlm.nih.gov/pubmed/33024860
http://dx.doi.org/10.1016/j.heliyon.2020.e05048
Descripción
Sumario:Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffraction. The structural and anatomical changes of F. solani in response to Zn(II) was examined by TEM and SEM. From the HPLC profile, oxalic acid by F. solani was strongly increased by about 10.5 folds in response to 200 mg/l Zn(II) comparing to control cultures. The highest biosorption potential were reported at pH 4.0 (alkali-treated biomass) and 5.0 (native biomass), at 600 mg/l Zn(II) concentration, incubation temperature 30 °C, and contact time 40 min (alkali-treated biomass) and 6 h (native biomass). From the FT-IR spectroscopy, the main functional groups implemented on this remediation were C–S stretching, C=O C=N, C–H bending, C–N stretching and N–H bending. From the EDX spectra, fungal cellular sulfur and phosphorus compounds were the mainly compartments involved on ZN(II) binding.