Cargando…
Joint learning of multiple gene networks from single-cell gene expression data
Inferring gene networks from gene expression data is important for understanding functional organizations within cells. With the accumulation of single-cell RNA sequencing (scRNA-seq) data, it is possible to infer gene networks at single cell level. However, due to the characteristics of scRNA-seq d...
Autores principales: | Wu, Nuosi, Yin, Fu, Ou-Yang, Le, Zhu, Zexuan, Xie, Weixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527714/ https://www.ncbi.nlm.nih.gov/pubmed/33033579 http://dx.doi.org/10.1016/j.csbj.2020.09.004 |
Ejemplares similares
-
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
An exploratory study of CT radiomics using differential network feature selection for WHO/ISUP grading and progression-free survival prediction of clear cell renal cell carcinoma
por: Yin, Fu, et al.
Publicado: (2022) -
Differential network analysis from cross-platform gene expression data
por: Zhang, Xiao-Fei, et al.
Publicado: (2016) -
Inferring cancer common and specific gene networks via multi-layer joint graphical model
por: Chen, Yuanxiao, et al.
Publicado: (2023) -
Learning the structure of gene regulatory networks from time series gene expression data
por: Li, Haoni, et al.
Publicado: (2011)