Cargando…
Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import
Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N‐terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527813/ https://www.ncbi.nlm.nih.gov/pubmed/32815200 http://dx.doi.org/10.15252/embj.2019103889 |
_version_ | 1783589137776902144 |
---|---|
author | Finger, Yannik Habich, Markus Gerlich, Sarah Urbanczyk, Sophia van de Logt, Erik Koch, Julian Schu, Laura Lapacz, Kim Jasmin Ali, Muna Petrungaro, Carmelina Salscheider, Silja Lucia Pichlo, Christian Baumann, Ulrich Mielenz, Dirk Dengjel, Joern Brachvogel, Bent Hofmann, Kay Riemer, Jan |
author_facet | Finger, Yannik Habich, Markus Gerlich, Sarah Urbanczyk, Sophia van de Logt, Erik Koch, Julian Schu, Laura Lapacz, Kim Jasmin Ali, Muna Petrungaro, Carmelina Salscheider, Silja Lucia Pichlo, Christian Baumann, Ulrich Mielenz, Dirk Dengjel, Joern Brachvogel, Bent Hofmann, Kay Riemer, Jan |
author_sort | Finger, Yannik |
collection | PubMed |
description | Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N‐terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N‐terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N‐terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9‐mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments. |
format | Online Article Text |
id | pubmed-7527813 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75278132020-10-05 Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import Finger, Yannik Habich, Markus Gerlich, Sarah Urbanczyk, Sophia van de Logt, Erik Koch, Julian Schu, Laura Lapacz, Kim Jasmin Ali, Muna Petrungaro, Carmelina Salscheider, Silja Lucia Pichlo, Christian Baumann, Ulrich Mielenz, Dirk Dengjel, Joern Brachvogel, Bent Hofmann, Kay Riemer, Jan EMBO J Articles Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N‐terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N‐terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N‐terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9‐mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments. John Wiley and Sons Inc. 2020-08-20 2020-10-01 /pmc/articles/PMC7527813/ /pubmed/32815200 http://dx.doi.org/10.15252/embj.2019103889 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Finger, Yannik Habich, Markus Gerlich, Sarah Urbanczyk, Sophia van de Logt, Erik Koch, Julian Schu, Laura Lapacz, Kim Jasmin Ali, Muna Petrungaro, Carmelina Salscheider, Silja Lucia Pichlo, Christian Baumann, Ulrich Mielenz, Dirk Dengjel, Joern Brachvogel, Bent Hofmann, Kay Riemer, Jan Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import |
title | Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import |
title_full | Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import |
title_fullStr | Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import |
title_full_unstemmed | Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import |
title_short | Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import |
title_sort | proteasomal degradation induced by dpp9‐mediated processing competes with mitochondrial protein import |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527813/ https://www.ncbi.nlm.nih.gov/pubmed/32815200 http://dx.doi.org/10.15252/embj.2019103889 |
work_keys_str_mv | AT fingeryannik proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT habichmarkus proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT gerlichsarah proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT urbanczyksophia proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT vandelogterik proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT kochjulian proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT schulaura proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT lapaczkimjasmin proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT alimuna proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT petrungarocarmelina proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT salscheidersiljalucia proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT pichlochristian proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT baumannulrich proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT mielenzdirk proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT dengjeljoern proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT brachvogelbent proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT hofmannkay proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport AT riemerjan proteasomaldegradationinducedbydpp9mediatedprocessingcompeteswithmitochondrialproteinimport |