Cargando…
Automatic Grading of Stroke Symptoms for Rapid Assessment Using Optimized Machine Learning and 4-Limb Kinematics: Clinical Validation Study
BACKGROUND: Subtle abnormal motor signs are indications of serious neurological diseases. Although neurological deficits require fast initiation of treatment in a restricted time, it is difficult for nonspecialists to detect and objectively assess the symptoms. In the clinical environment, diagnoses...
Autores principales: | Park, Eunjeong, Lee, Kijeong, Han, Taehwa, Nam, Hyo Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527905/ https://www.ncbi.nlm.nih.gov/pubmed/32936079 http://dx.doi.org/10.2196/20641 |
Ejemplares similares
-
Agreement and Reliability Analysis of Machine Learning Scaling and Wireless Monitoring in the Assessment of Acute Proximal Weakness by Experts and Non-Experts: A Feasibility Study
por: Park, Eunjeong, et al.
Publicado: (2022) -
Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients
por: Park, Eunjeong, et al.
Publicado: (2017) -
Facilitating Stroke Management using Modern Information Technology
por: Nam, Hyo Suk, et al.
Publicado: (2013) -
A Bayesian Network Model for Predicting Post-stroke Outcomes With Available Risk Factors
por: Park, Eunjeong, et al.
Publicado: (2018) -
Kinematic analysis of movement patterns during a reach-and-grasp task in stroke patients
por: Choi, Hyoseon, et al.
Publicado: (2023)