Cargando…
Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)
In membrane separation technologies, membrane modules are used to separate chemical components. In membrane technology, understanding the behavior of fluids inside membrane module is challenging, and numerical methods are possible by using computational fluid dynamics (CFD). On the other hand, the o...
Autores principales: | Babanezhad, Meisam, Masoumian, Armin, Nakhjiri, Ali Taghvaie, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527959/ https://www.ncbi.nlm.nih.gov/pubmed/32999437 http://dx.doi.org/10.1038/s41598-020-73175-0 |
Ejemplares similares
-
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Changes in the Number of Membership Functions for
Predicting the Gas Volume Fraction in Two-Phase Flow Using Grid Partition
Clustering of the ANFIS Method
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Computational Modeling of Transport in Porous Media
Using an Adaptive Network-Based Fuzzy Inference System
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods
por: Babanezhad, Meisam, et al.
Publicado: (2020)