Cargando…

Reproducibility of Bioelectrical Impedance Analysis in Pregnancy and the Association of Body Composition with the Risk of Gestational Diabetes: A Substudy of MUMS Cohort

INTRODUCTION: Bioelectrical impedance analysis (BIA) is a rapid and noninvasive method of body composition analysis; however, reproducibility between BIA instruments in pregnancy is uncertain. Adverse maternal body composition has been linked to pregnancy complications including gestational diabetes...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Michelle, Susic, Daniella, O'Sullivan, Anthony J., Henry, Amanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528004/
https://www.ncbi.nlm.nih.gov/pubmed/33029392
http://dx.doi.org/10.1155/2020/3128767
Descripción
Sumario:INTRODUCTION: Bioelectrical impedance analysis (BIA) is a rapid and noninvasive method of body composition analysis; however, reproducibility between BIA instruments in pregnancy is uncertain. Adverse maternal body composition has been linked to pregnancy complications including gestational diabetes mellitus (GDM). This study aimed to evaluate the reproducibility of three BIA instruments in pregnancy and analyse the relationship between the body composition and the GDM risk. METHODS: A prospective cohort (n = 117) of women with singleton pregnancies participating in the Microbiome Understanding in Maternity Study (MUMS) at St. George Hospital, Sydney, Australia. Anthropometric measurements and BIA body composition were measured at ≤13 weeks (T1), 20–24 weeks (T2), and 32–36 weeks (T3) of gestation. Body fat percentage (BFP), total body water (TBW), and impedance were estimated by three BIA instruments: Bodystat 1500, RJL Quantum III, and Tanita BC-587. GDM status was recorded after 75 g oral glucose tolerance test was performed at 28 weeks or earlier. Agreement between BIA instruments was assessed using Bland–Altman analysis. Logistic regression modelling explored associations of BFP with GDM. RESULTS: Method comparison reproducibility between Bodystat and RJL was stronger than between Bodystat and Tanita for both BFP and TBW% at all three time points. RJL overestimated BFP on average by 3.3% (p < 0.001), with limits of agreement within ±5% for all trimesters. Average BFP was not significantly different between Tanita and Bodystat although limits of agreement exceeded ±5%. GDM diagnosis was independently associated with increased BFP in T1 (adjusted OR 1.117 per 1% increase; 95% CI 1.020–1.224; p=0.017) and in T2 (adjusted OR 1.113 per 1% increase; 95% CI 1.010–1.226; p=0.031) and with Asian ethnicity in all models (OR 7.4–8.1). CONCLUSION: Reproducibility amongst instruments was moderate; therefore, interchangeability between instruments, particularly for research purposes, cannot be assumed. In this cohort, GDM risk was modestly associated with increasing BFP and strongly associated with Asian ethnicity.