Cargando…
Aβ-Induced Repressor Element 1-Silencing Transcription Factor (REST) Gene Delivery Suppresses Activation of Microglia-Like BV-2 Cells
Compelling evidence from basic molecular biology has demonstrated the crucial role of microglia in the pathogenesis of Alzheimer's disease (AD). Microglia were believed to play a dual role in both promoting and inhibiting Alzheimer's disease progression. It is of great significance to regu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528025/ https://www.ncbi.nlm.nih.gov/pubmed/33029126 http://dx.doi.org/10.1155/2020/8888871 |
Sumario: | Compelling evidence from basic molecular biology has demonstrated the crucial role of microglia in the pathogenesis of Alzheimer's disease (AD). Microglia were believed to play a dual role in both promoting and inhibiting Alzheimer's disease progression. It is of great significance to regulate the function of microglia and make them develop in a favorable way. In the present study, we investigated the function of repressor element 1-silencing transcription factor (REST) in Aβ(1-42)-induced BV-2 cell dysfunction. We concluded that Aβ(1-42) could promote type I activation of BV-2 cells and induce cell proliferation, migration, and proinflammation cytokine TNF-α, IL-1β, and IL-6 expression. Meanwhile, REST was upregulated, and nuclear translocalization took place due to Aβ(1-42) stimulation. When REST was knocked down by a specific short hairpin RNA (sh-RNA), BV-2 cell proliferation, migration, and proinflammation cytokine expression and secretion induced by Aβ(1-42) were increased, demonstrating that REST may act as a repressor of microglia-like BV-2 cell activation. |
---|