Cargando…
Concentration- and Temperature-Responsive Reversible Transition in Amide-Functionalized Surface-Active Ionic Liquids: Micelles to Vesicles to Organogel
[Image: see text] A ubiquitous example of DNA and proteins inspires the scientific community to design synthetic systems that can construct various self-assembled complex nano-objects for high-end physiological functions. To gain insight into judiciously designed artificial amphiphilic structures th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528175/ https://www.ncbi.nlm.nih.gov/pubmed/33015444 http://dx.doi.org/10.1021/acsomega.0c02397 |
Sumario: | [Image: see text] A ubiquitous example of DNA and proteins inspires the scientific community to design synthetic systems that can construct various self-assembled complex nano-objects for high-end physiological functions. To gain insight into judiciously designed artificial amphiphilic structures that through self-assembling form various morphological architectures within a single system, herein, we have studied self-aggregation of amide-functionalized surface-active ionic liquids (AFSAILs) with different head groups in the DMSO/water mixed system. The AFSAIL forms stimuli-responsive reversible micelle and vesicle configurations that coexist with three-dimensional (3D) network structures, the organogel in the DMSO/water mixed system. The self-assembly driving forces, self-organization patterns, network morphologies, and mechanical properties of these network structures have been investigated. With the proven biodegradability and biocompatibility, one can envisage these AFSAILs as the molecules with a new dimension of versatility. |
---|