Cargando…

Chelator Regulation of In Situ Calcium Availability to Enable Spray-Dry Microencapsulation in Cross-Linked Alginates

[Image: see text] A recently patented one-step in situ cross-linked alginate microencapsulation (CLAM) by spray-drying (i.e., the UC Davis CLAMs technology) can overcome the high cost of scale-up that limits commercial applications. While increasing calcium loading in the CLAMs process can increase...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Dana E., Cunniffe, Julia C., Scher, Herbert B., Jeoh, Tina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528317/
https://www.ncbi.nlm.nih.gov/pubmed/33015461
http://dx.doi.org/10.1021/acsomega.0c02030
Descripción
Sumario:[Image: see text] A recently patented one-step in situ cross-linked alginate microencapsulation (CLAM) by spray-drying (i.e., the UC Davis CLAMs technology) can overcome the high cost of scale-up that limits commercial applications. While increasing calcium loading in the CLAMs process can increase the extent of cross-linking and improve retention and protection of the encapsulated cargo, the potential for residual undissolved calcium salt crystals in the final product can be a concern for some applications. Here, we demonstrate an alternate one-step spray-dry CLAMs process using pH-responsive chelation of calcium. The “Chelate CLAMs” process is an improvement over the patented process that controls ion availability based on pH-responsive solubility of the calcium salt. Hyaluronic acid was encapsulated in CLAMs to minimize swelling and release in aqueous formulations. CLAMs with 61% (d.b.) hyaluronic acid (HA-CLAMs) demonstrated restricted plumping, limited water absorption capacity, and reduced leaching, retaining up to 49% hyaluronic acid after 2 h in water. Alternatively, “Chelate HA-CLAMs” formed by the improved process exhibited nearly full retention of hyaluronic acid over 2 h in water and remained visibly insoluble after 1 year of storage in water at 4 °C. Successful hyaluronic acid retention in CLAMs is likely due in part to its ability to cross-link with calcium.