Cargando…
Preliminary Investigations of an Opposed Rotary Piston Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel Cell System
[Image: see text] Automotive polymer electrolyte membrane fuel cell systems are attracting much attention, driven by the requirements of low automotive exhaust emissions and energy consumption. A polymer electrolyte membrane fuel cell system provides opportunities for the developments in different t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528334/ https://www.ncbi.nlm.nih.gov/pubmed/33015491 http://dx.doi.org/10.1021/acsomega.0c03347 |
_version_ | 1783589242010599424 |
---|---|
author | Xing, Shikai Gao, Jianbing Tian, Guohong Zhao, Meng Ma, Chaochen |
author_facet | Xing, Shikai Gao, Jianbing Tian, Guohong Zhao, Meng Ma, Chaochen |
author_sort | Xing, Shikai |
collection | PubMed |
description | [Image: see text] Automotive polymer electrolyte membrane fuel cell systems are attracting much attention, driven by the requirements of low automotive exhaust emissions and energy consumption. A polymer electrolyte membrane fuel cell system provides opportunities for the developments in different types of air compressors. This paper proposed an opposed rotary piston compressor, which had the merits of more compact structures, less movement components, and a high pressure ratio, meeting the requirements of polymer electrolyte membrane fuel cell systems. Preliminary performance evaluations of the opposed rotary piston compressor were conducted under various scenarios. This will make a foundation for optimizations of outlet pipe layouts of the compressor. A three-dimensional numerical simulation approach was used; further, in-cylinder pressure evolutions, fluid mass flow rates, and P–V diagrams were analyzed. It indicated that the cyclic period of the opposed rotary piston compressor was half of reciprocating piston compressors. The specific mass flow rate of the compressor is in the range of 0.094–0.113 kg·(s·L)(−1) for the given scenarios. Outlet ports 1 and 2 dominated the mass flow in the discharge process under scenarios 1, 3, and 4. In-cylinder pressure profiles show multipeaks for all of these scenarios. In-cylinder pressure increased rapidly in the compression process and part of the discharge process, which led to high energy consumption and low adiabatic efficiency. The maximum adiabatic efficiency is approximately 43.96% among the given scenarios. |
format | Online Article Text |
id | pubmed-7528334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75283342020-10-02 Preliminary Investigations of an Opposed Rotary Piston Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel Cell System Xing, Shikai Gao, Jianbing Tian, Guohong Zhao, Meng Ma, Chaochen ACS Omega [Image: see text] Automotive polymer electrolyte membrane fuel cell systems are attracting much attention, driven by the requirements of low automotive exhaust emissions and energy consumption. A polymer electrolyte membrane fuel cell system provides opportunities for the developments in different types of air compressors. This paper proposed an opposed rotary piston compressor, which had the merits of more compact structures, less movement components, and a high pressure ratio, meeting the requirements of polymer electrolyte membrane fuel cell systems. Preliminary performance evaluations of the opposed rotary piston compressor were conducted under various scenarios. This will make a foundation for optimizations of outlet pipe layouts of the compressor. A three-dimensional numerical simulation approach was used; further, in-cylinder pressure evolutions, fluid mass flow rates, and P–V diagrams were analyzed. It indicated that the cyclic period of the opposed rotary piston compressor was half of reciprocating piston compressors. The specific mass flow rate of the compressor is in the range of 0.094–0.113 kg·(s·L)(−1) for the given scenarios. Outlet ports 1 and 2 dominated the mass flow in the discharge process under scenarios 1, 3, and 4. In-cylinder pressure profiles show multipeaks for all of these scenarios. In-cylinder pressure increased rapidly in the compression process and part of the discharge process, which led to high energy consumption and low adiabatic efficiency. The maximum adiabatic efficiency is approximately 43.96% among the given scenarios. American Chemical Society 2020-09-19 /pmc/articles/PMC7528334/ /pubmed/33015491 http://dx.doi.org/10.1021/acsomega.0c03347 Text en This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Xing, Shikai Gao, Jianbing Tian, Guohong Zhao, Meng Ma, Chaochen Preliminary Investigations of an Opposed Rotary Piston Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel Cell System |
title | Preliminary Investigations of an Opposed Rotary Piston
Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel
Cell System |
title_full | Preliminary Investigations of an Opposed Rotary Piston
Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel
Cell System |
title_fullStr | Preliminary Investigations of an Opposed Rotary Piston
Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel
Cell System |
title_full_unstemmed | Preliminary Investigations of an Opposed Rotary Piston
Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel
Cell System |
title_short | Preliminary Investigations of an Opposed Rotary Piston
Compressor for the Air Feeding of a Polymer Electrolyte Membrane Fuel
Cell System |
title_sort | preliminary investigations of an opposed rotary piston
compressor for the air feeding of a polymer electrolyte membrane fuel
cell system |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528334/ https://www.ncbi.nlm.nih.gov/pubmed/33015491 http://dx.doi.org/10.1021/acsomega.0c03347 |
work_keys_str_mv | AT xingshikai preliminaryinvestigationsofanopposedrotarypistoncompressorfortheairfeedingofapolymerelectrolytemembranefuelcellsystem AT gaojianbing preliminaryinvestigationsofanopposedrotarypistoncompressorfortheairfeedingofapolymerelectrolytemembranefuelcellsystem AT tianguohong preliminaryinvestigationsofanopposedrotarypistoncompressorfortheairfeedingofapolymerelectrolytemembranefuelcellsystem AT zhaomeng preliminaryinvestigationsofanopposedrotarypistoncompressorfortheairfeedingofapolymerelectrolytemembranefuelcellsystem AT machaochen preliminaryinvestigationsofanopposedrotarypistoncompressorfortheairfeedingofapolymerelectrolytemembranefuelcellsystem |