Cargando…
Embedding covariate adjustments in tree-based automated machine learning for biomedical big data analyses
BACKGROUND: A typical task in bioinformatics consists of identifying which features are associated with a target outcome of interest and building a predictive model. Automated machine learning (AutoML) systems such as the Tree-based Pipeline Optimization Tool (TPOT) constitute an appealing approach...
Autores principales: | Manduchi, Elisabetta, Fu, Weixuan, Romano, Joseph D., Ruberto, Stefano, Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528347/ https://www.ncbi.nlm.nih.gov/pubmed/32998684 http://dx.doi.org/10.1186/s12859-020-03755-4 |
Ejemplares similares
-
Scaling tree-based automated machine learning to biomedical big data with a feature set selector
por: Le, Trang T, et al.
Publicado: (2020) -
Genetic analysis of coronary artery disease using tree-based automated machine learning informed by biology-based feature selection
por: Manduchi, Elisabetta, et al.
Publicado: (2022) -
The promise of automated machine learning for the genetic analysis of complex traits
por: Manduchi, Elisabetta, et al.
Publicado: (2021) -
A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation
por: Kaufman, Jay S, et al.
Publicado: (2004) -
Individual level covariate adjusted conditional autoregressive (indiCAR) model for disease mapping
por: Huque, Md. Hamidul, et al.
Publicado: (2016)