Cargando…
Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización
INTRODUCTION: The aims of the study were: to develop a predictive model for hospital mortality and another for hospital re-admission, to identify the impact of antibiotic delay in the mortality rate and, to report the rate of inappropriate antibiotic therapy. MATERIAL AND METHODS: A cohort and retro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedad Española de Quimioterapia
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528414/ https://www.ncbi.nlm.nih.gov/pubmed/32766668 http://dx.doi.org/10.37201/req/063.2020 |
_version_ | 1783589257581953024 |
---|---|
author | Villanueva, Julio Montes-Andujar, Lara Baez-Pravia, Orville V GarcíaLamberechts, Eric Jorge del Castillo, Juan González Ruiz, Andrés Zurdo, Carmen Barberán, José Menéndez, Justo Cardinal-Fernández, Pablo |
author_facet | Villanueva, Julio Montes-Andujar, Lara Baez-Pravia, Orville V GarcíaLamberechts, Eric Jorge del Castillo, Juan González Ruiz, Andrés Zurdo, Carmen Barberán, José Menéndez, Justo Cardinal-Fernández, Pablo |
author_sort | Villanueva, Julio |
collection | PubMed |
description | INTRODUCTION: The aims of the study were: to develop a predictive model for hospital mortality and another for hospital re-admission, to identify the impact of antibiotic delay in the mortality rate and, to report the rate of inappropriate antibiotic therapy. MATERIAL AND METHODS: A cohort and retrospective study was conducted at the HM Sanchinarro University Hospital during the period September 1st, 2012 to March 31th, 2013. The inclusion criteria were: age> 18 years, hospital admission from the ED with a diagnosis of bacterial infection. The exclusion criteria were: suspected viral infection, negative bacteriological cultures, life expectancy less than 6 months, lack of clinical information, assistance exclusively by the trauma emergency department. Two logistic models were made (hospital mortality and hospital re-admission). RESULTS: A total of 517 patients were included. The final mortality model (30 deaths) include the following variables: respiratory rate (OR 1.12; IC95% 1.02; 1.22), oxygen saturation (OR 0.92; IC95% 0.87; 0.98), creatinine (OR 2.33; IC95% 1.62; 3.36), COPD (OR 3.02; IC95% 1.06; 8.21), cancer (OR 3.34; IC95% 1.07; 9.98) and chemotherapy in the last 3 months (OR 4.83; IC95% 1.54; 16.41). The final model for hospital re-admission (28 re-admissions) include the following variables: hepatopathy (OR 5.51; IC95% 1.57; 16.88), GPT (OR 1.005; IC95% 1.003; 1.008), history of stroke (OR 5.06; IC95% 1.04; 18.80) and arterial hypertension (OR 3.15; IC95% 1.38; 7.56). The antibiotic therapy delays not influenced the mortality or re-admission rate. In 24.3% the causative microorganism was identified and antibiotic treatment was inappropriate 19.6%. CONCLUSION: Hospital mortality rate was 5.8% and readmission rate was 5.7%. Variables associated with mortality differ from those associated with re-admission. The delay in the antibiotic initiation was not associated with a deleterious effect. Antibiotic therapy was inadequate in almost 20% of patients. |
format | Online Article Text |
id | pubmed-7528414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Sociedad Española de Quimioterapia |
record_format | MEDLINE/PubMed |
spelling | pubmed-75284142020-10-05 Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización Villanueva, Julio Montes-Andujar, Lara Baez-Pravia, Orville V GarcíaLamberechts, Eric Jorge del Castillo, Juan González Ruiz, Andrés Zurdo, Carmen Barberán, José Menéndez, Justo Cardinal-Fernández, Pablo Rev Esp Quimioter Original INTRODUCTION: The aims of the study were: to develop a predictive model for hospital mortality and another for hospital re-admission, to identify the impact of antibiotic delay in the mortality rate and, to report the rate of inappropriate antibiotic therapy. MATERIAL AND METHODS: A cohort and retrospective study was conducted at the HM Sanchinarro University Hospital during the period September 1st, 2012 to March 31th, 2013. The inclusion criteria were: age> 18 years, hospital admission from the ED with a diagnosis of bacterial infection. The exclusion criteria were: suspected viral infection, negative bacteriological cultures, life expectancy less than 6 months, lack of clinical information, assistance exclusively by the trauma emergency department. Two logistic models were made (hospital mortality and hospital re-admission). RESULTS: A total of 517 patients were included. The final mortality model (30 deaths) include the following variables: respiratory rate (OR 1.12; IC95% 1.02; 1.22), oxygen saturation (OR 0.92; IC95% 0.87; 0.98), creatinine (OR 2.33; IC95% 1.62; 3.36), COPD (OR 3.02; IC95% 1.06; 8.21), cancer (OR 3.34; IC95% 1.07; 9.98) and chemotherapy in the last 3 months (OR 4.83; IC95% 1.54; 16.41). The final model for hospital re-admission (28 re-admissions) include the following variables: hepatopathy (OR 5.51; IC95% 1.57; 16.88), GPT (OR 1.005; IC95% 1.003; 1.008), history of stroke (OR 5.06; IC95% 1.04; 18.80) and arterial hypertension (OR 3.15; IC95% 1.38; 7.56). The antibiotic therapy delays not influenced the mortality or re-admission rate. In 24.3% the causative microorganism was identified and antibiotic treatment was inappropriate 19.6%. CONCLUSION: Hospital mortality rate was 5.8% and readmission rate was 5.7%. Variables associated with mortality differ from those associated with re-admission. The delay in the antibiotic initiation was not associated with a deleterious effect. Antibiotic therapy was inadequate in almost 20% of patients. Sociedad Española de Quimioterapia 2020-08-05 2020 /pmc/articles/PMC7528414/ /pubmed/32766668 http://dx.doi.org/10.37201/req/063.2020 Text en ©The Author 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)(https://creativecommons.org/licenses/by-nc/4.0/). |
spellingShingle | Original Villanueva, Julio Montes-Andujar, Lara Baez-Pravia, Orville V GarcíaLamberechts, Eric Jorge del Castillo, Juan González Ruiz, Andrés Zurdo, Carmen Barberán, José Menéndez, Justo Cardinal-Fernández, Pablo Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
title | Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
title_full | Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
title_fullStr | Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
title_full_unstemmed | Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
title_short | Desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
title_sort | desarrollo de un modelo predictivo para mortalidad y otro para reingreso hospitalario en una cohorte de paciente con infección que requieren hospitalización |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528414/ https://www.ncbi.nlm.nih.gov/pubmed/32766668 http://dx.doi.org/10.37201/req/063.2020 |
work_keys_str_mv | AT villanuevajulio desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT montesandujarlara desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT baezpraviaorvillev desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT garcialamberechtsericjorge desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT delcastillojuangonzalez desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT ruizandres desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT zurdocarmen desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT barberanjose desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT menendezjusto desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion AT cardinalfernandezpablo desarrollodeunmodelopredictivoparamortalidadyotroparareingresohospitalarioenunacohortedepacienteconinfeccionquerequierenhospitalizacion |