Cargando…
Locomo-Net: A Low -Complex Deep Learning Framework for sEMG-Based Hand Movement Recognition for Prosthetic Control
Background: The enhancement in the performance of the myoelectric pattern recognition techniques based on deep learning algorithm possess computationally expensive and exhibit extensive memory behavior. Therefore, in this paper we report a deep learning framework named ‘Low-Complex Movement recognit...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529116/ https://www.ncbi.nlm.nih.gov/pubmed/33014638 http://dx.doi.org/10.1109/JTEHM.2020.3023898 |
Ejemplares similares
-
Evaluation of User-Prosthesis-Interfaces for sEMG-Based Multifunctional Prosthetic Hands
por: Fajardo, Julio, et al.
Publicado: (2021) -
Phase-Based Grasp Classification for Prosthetic Hand Control Using sEMG
por: Wang, Shuo, et al.
Publicado: (2022) -
Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements
por: Zhong, Tianyang, et al.
Publicado: (2021) -
Integrating computer vision to prosthetic hand control with sEMG: Preliminary results in grasp classification
por: Wang, Shuo, et al.
Publicado: (2022) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023)