Cargando…
Deep learning-based reduced order models in cardiac electrophysiology
Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depolarization cycle occurring at every heart beat...
Autores principales: | Fresca, Stefania, Manzoni, Andrea, Dedè, Luca, Quarteroni, Alfio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529269/ https://www.ncbi.nlm.nih.gov/pubmed/33002014 http://dx.doi.org/10.1371/journal.pone.0239416 |
Ejemplares similares
-
POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium
por: Fresca, Stefania, et al.
Publicado: (2021) -
Data integration for the numerical simulation of cardiac electrophysiology
por: Pagani, Stefano, et al.
Publicado: (2021) -
Reduced Order Modeling of Nonlinear Vibrating Multiphysics Microstructures with Deep Learning-Based Approaches
por: Gobat, Giorgio, et al.
Publicado: (2023) -
Biophysically detailed mathematical models of multiscale cardiac active mechanics
por: Regazzoni, Francesco, et al.
Publicado: (2020) -
Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction
por: Regazzoni, Francesco, et al.
Publicado: (2020)