Cargando…
Improving Spatial Estimates for COVID-19 Using Surveillance Data in Philadelphia
Autores principales: | Goldstein, N.D., Wheeler, D.C., Gustafson, P., Burstyn, I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529668/ http://dx.doi.org/10.1016/j.annepidem.2020.08.050 |
Ejemplares similares
-
A Bayesian approach to improving spatial estimates of prevalence of COVID-19 after accounting for misclassification bias in surveillance data in Philadelphia, PA
por: Goldstein, Neal D., et al.
Publicado: (2021) -
Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: Case study of COVID-19 in Alberta, Canada and Philadelphia, USA
por: Burstyn, Igor, et al.
Publicado: (2020) -
Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: case study of COVID-19 in Alberta, Canada and Philadelphia, USA
por: Burstyn, Igor, et al.
Publicado: (2020) -
It can be dangerous to take epidemic curves of COVID-19 at face value
por: Burstyn, Igor, et al.
Publicado: (2020) -
Experiences of coping with the first wave of COVID-19 epidemic in Philadelphia, PA: Mixed methods analysis of a cross-sectional survey of worries and symptoms of mood disorders
por: Burstyn, Igor, et al.
Publicado: (2021)