Cargando…
Deep longitudinal multiomics profiling reveals two biological seasonal patterns in California
The influence of seasons on biological processes is poorly understood. In order to identify biological seasonal patterns based on diverse molecular data, rather than calendar dates, we performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we report more than 1000...
Autores principales: | Sailani, M. Reza, Metwally, Ahmed A., Zhou, Wenyu, Rose, Sophia Miryam Schüssler-Fiorenza, Ahadi, Sara, Contrepois, Kevin, Mishra, Tejaswini, Zhang, Martin Jinye, Kidziński, Łukasz, Chu, Theodore J., Snyder, Michael P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529769/ https://www.ncbi.nlm.nih.gov/pubmed/33004787 http://dx.doi.org/10.1038/s41467-020-18758-1 |
Ejemplares similares
-
A Longitudinal Big Data Approach for Precision Health
por: Rose, Sophia Miryam Schüssler-Fiorenza, et al.
Publicado: (2019) -
Dynamic lipidome alterations associated with human health, disease and ageing
por: Hornburg, Daniel, et al.
Publicado: (2023) -
Precision environmental health monitoring by longitudinal exposome and multi-omics profiling
por: Gao, Peng, et al.
Publicado: (2022) -
Longitudinal multi-omics of host–microbe dynamics in prediabetes
por: Zhou, Wenyu, et al.
Publicado: (2019) -
Robust identification of temporal biomarkers in longitudinal omics studies
por: Metwally, Ahmed A, et al.
Publicado: (2022)