Cargando…
Bi-Dimensional Approach Based on Transfer Learning for Alcoholism Pre-disposition Classification via EEG Signals
Recent statistics have shown that the main difficulty in detecting alcoholism is the unreliability of the information presented by patients with alcoholism; this factor confusing the early diagnosis and it can reduce the effectiveness of treatment. However, electroencephalogram (EEG) exams can provi...
Autores principales: | Zhang, Hongyi, Silva, Francisco H. S., Ohata, Elene F., Medeiros, Aldisio G., Rebouças Filho, Pedro P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530264/ https://www.ncbi.nlm.nih.gov/pubmed/33061900 http://dx.doi.org/10.3389/fnhum.2020.00365 |
Ejemplares similares
-
Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces
por: Plucknett, William, et al.
Publicado: (2022) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023) -
Recognition of Consumer Preference by Analysis and Classification EEG Signals
por: Aldayel, Mashael, et al.
Publicado: (2021) -
Application of multi-task transfer learning: The combination of EA and optimized subband regularized CSP to classification of 8-channel EEG signals with small dataset
por: Long, Taixue, et al.
Publicado: (2023) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023)