Cargando…
Lemon Exosome-like Nanoparticles-Manipulated Probiotics Protect Mice from C. diff Infection
Clostridioides difficile (C. diff) is the leading cause of antibiotic-associated colitis. Here, we report that lemon exosome-like nanoparticles (LELNs) manipulated probiotics to inhibit C. diff infection (CDI). LELN-manipulated Lactobacillus rhamnosus GG (LGG) and Streptococcus thermophilus ST-21 (S...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530291/ https://www.ncbi.nlm.nih.gov/pubmed/33083738 http://dx.doi.org/10.1016/j.isci.2020.101571 |
Sumario: | Clostridioides difficile (C. diff) is the leading cause of antibiotic-associated colitis. Here, we report that lemon exosome-like nanoparticles (LELNs) manipulated probiotics to inhibit C. diff infection (CDI). LELN-manipulated Lactobacillus rhamnosus GG (LGG) and Streptococcus thermophilus ST-21 (STH) (LELN-LS) decrease CDI mortality via an LELN-mediated increase in bile resistance and gut survivability. LELN-LS treatment increases the AhR ligands indole-3-lactic acid (I3LA) and indole-3-carboxaldehyde (I3Ald), leading to induction of IL-22, and increases lactic acid leading to a decrease of C. diff fecal shedding by inhibiting C. diff growth and indole biosynthesis. A synergistic effect between STH and LGG was identified. The STH metabolites inhibit gluconeogenesis of LGG and allow fructose-1,6-bisphosphate (FBP) to accumulate in LGG; accumulated FBP then activates lactate dehydrogenase of LGG (LGG-LDH) and enhances production of lactic acid and the AhR ligand. Our findings provide a new strategy for CDI prevention and treatment with a new type of prebiotics. |
---|