Cargando…
Identifying Heat Shock Protein Families from Imbalanced Data by Using Combined Features
Heat shock proteins (HSPs) are ubiquitous in living organisms. HSPs are an essential component for cell growth and survival; the main function of HSPs is controlling the folding and unfolding process of proteins. According to molecular function and mass, HSPs are categorized into six different famil...
Autores principales: | Jing, Xiao-Yang, Li, Feng-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530508/ https://www.ncbi.nlm.nih.gov/pubmed/33029195 http://dx.doi.org/10.1155/2020/8894478 |
Ejemplares similares
-
A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data
por: Yang, Runtao, et al.
Publicado: (2016) -
Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
por: Yang, Junshan, et al.
Publicado: (2016) -
Protein transfer learning improves identification of heat shock protein families
por: Min, Seonwoo, et al.
Publicado: (2021) -
Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN
por: Zhang, Liyuan, et al.
Publicado: (2018) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020)