Cargando…
Implicit bias of encoded variables: frameworks for addressing structured bias in EHR–GWAS data
The ‘discovery’ stage of genome-wide association studies required amassing large, homogeneous cohorts. In order to attain clinically useful insights, we must now consider the presentation of disease within our clinics and, by extension, within our medical records. Large-scale use of electronic healt...
Autores principales: | Dueñas, Hillary R, Seah, Carina, Johnson, Jessica S, Huckins, Laura M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530523/ https://www.ncbi.nlm.nih.gov/pubmed/32879975 http://dx.doi.org/10.1093/hmg/ddaa192 |
Ejemplares similares
-
Uncovering and Addressing Implicit Bias in Oncology
por: Dimarco, Rose, et al.
Publicado: (2023) -
The importance of disability representation to address implicit bias in the workplace
por: Derbyshire, Daniel W., et al.
Publicado: (2023) -
Extended Implicit Bias: When the Metaphysics and Ethics of Implicit Bias Collide
por: Peters, Uwe
Publicado: (2022) -
BTOB: Extending the Biased GWAS to Bivariate GWAS
por: Zhu, Junxian, et al.
Publicado: (2021) -
Gaps in Measuring and Mitigating Implicit Bias in Healthcare
por: Arif, Sally A., et al.
Publicado: (2021)