Cargando…

Activation of angiotensin II type-2 receptor protects against cigarette smoke-induced COPD

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. Cumulative evidence has implicated renin-angiotensin system (RAS) in the pathogenesis of COPD. This study aimed to investigate potential protective effects of angiotensin II type-2 receptor (AT2R) activation i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mei, Dan, Tan, W.S. Daniel, Liao, Wupeng, Heng, C.K. Matthew, Wong, W.S. Fred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530556/
https://www.ncbi.nlm.nih.gov/pubmed/33017650
http://dx.doi.org/10.1016/j.phrs.2020.105223
Descripción
Sumario:Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. Cumulative evidence has implicated renin-angiotensin system (RAS) in the pathogenesis of COPD. This study aimed to investigate potential protective effects of angiotensin II type-2 receptor (AT2R) activation in cigarette smoke (CS)-induced COPD models. Compound 21 (C21), a selective and potent non-peptide small molecule AT2R agonist, was evaluated for anti-inflammatory, anti-oxidative and anti-remodeling activities in a two-week (acute) and an eight-week (chronic) CS-induced COPD models. C21 inhibited CS-induced increases in macrophage and neutrophil counts, pro-inflammatory cytokines and oxidative damage markers in bronchoalveolar lavage (BAL) fluid, and TGF-β1 in lung tissues, from COPD models. C21 restored phosphatase activities and reduced phospho-p38 MAPK, phospho-ERK and p65 subunit of NF-κB levels in CS-exposed lung tissues. C21 also suppressed CS-induced increases in α-Sma, Mmp9, Mmp12 and hydroxyproline levels in lung tissues, and neutrophil elastase activity in BAL fluid. C21 modulated RAS in CS-exposed lungs by downregulating Ang II but upregulating Ang-(1–7) and Mas receptor levels. C21 prevented CS-induced emphysema and improved lung functions in chronic COPD model. We report here for the first time the protective effects of AT2R agonist C21 against CS-induced COPD, and provide strong evidence for further development of AT2R agonist for the treatment of COPD.