Cargando…
Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset
With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530651/ https://www.ncbi.nlm.nih.gov/pubmed/33004865 http://dx.doi.org/10.1038/s41598-020-73081-5 |
Sumario: | With considerable accumulation of RNA-Seq transcriptome data, we have extended our understanding about protein-coding gene transcript compositions. However, alternatively compounded patterns of human protein-coding gene transcripts would complicate gene expression data processing and interpretation. It is essential to exhaustively interrogate complex mRNA isoforms of protein-coding genes with an unified data resource. In order to investigate representative mRNA transcript isoforms to be utilized as transcriptome analysis references, we utilized GTEx data to establish a top-ranked transcript isoform expression data resource for human protein-coding genes. Distinctive tissue specific expression profiles and modulations could be observed for individual top-ranked transcripts of protein-coding genes. Protein-coding transcripts or genes do occupy much higher expression fraction in transcriptome data. In addition, top-ranked transcripts are the dominantly expressed ones in various normal tissues. Intriguingly, some of the top-ranked transcripts are noncoding splicing isoforms, which imply diverse gene regulation mechanisms. Comprehensive investigation on the tissue expression patterns of top-ranked transcript isoforms is crucial. Thus, we established a web tool to examine top-ranked transcript isoforms in various human normal tissue types, which provides concise transcript information and easy-to-use graphical user interfaces. Investigation of top-ranked transcript isoforms would contribute understanding on the functional significance of distinctive alternatively spliced transcript isoforms. |
---|